FREE BOOKS

Author's List




PREV.   NEXT  
|<   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81  
82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   >>   >|  
here." Its "I am here" is a clap of thunder. The snowstorm offers a problem analogous to the dry fog. If the solution of the _callina_ of the Spaniards and the _quobar_ of the Ethiopians be possible, assuredly that solution will be achieved by attentive observation of magnetic effluvium. Without effluvium a crowd of circumstances would remain enigmatic. Strictly speaking, the changes in the velocity of the wind, varying from 3 feet per second to 220 feet, would supply a reason for the variations of the waves rising from 3 inches in a calm sea to 36 feet in a raging one. Strictly speaking, the horizontal direction of the winds, even in a squall, enables us to understand how it is that a wave 30 feet high can be 1,500 feet long. But why are the waves of the Pacific four times higher near America than near Asia; that is to say, higher in the East than in the West? Why is the contrary true of the Atlantic? Why, under the Equator, are they highest in the middle of the sea? Wherefore these deviations in the swell of the ocean? This is what magnetic effluvium, combined with terrestrial rotation and sidereal attraction, can alone explain. Is not this mysterious complication needed to explain an oscillation of the wind veering, for instance, by the west from south-east to north-east, then suddenly returning in the same great curve from north-east to south-east, so as to make in thirty-six hours a prodigious circuit of 560 degrees? Such was the preface to the snowstorm of March 17, 1867. The storm-waves of Australia reach a height of 80 feet; this fact is connected with the vicinity of the Pole. Storms in those latitudes result less from disorder of the winds than from submarine electrical discharges. In the year 1866 the transatlantic cable was disturbed at regular intervals in its working for two hours in the twenty-four--from noon to two o'clock--by a sort of intermittent fever. Certain compositions and decompositions of forces produce phenomena, and impose themselves on the calculations of the seaman under pain of shipwreck. The day that navigation, now a routine, shall become a mathematic; the day we shall, for instance, seek to know why it is that in our regions hot winds come sometimes from the north, and cold winds from the south; the day we shall understand that diminutions of temperature are proportionate to oceanic depths; the day we realize that the globe is a vast loadstone polarized in immensity, with two
PREV.   NEXT  
|<   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81  
82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   >>   >|  



Top keywords:
effluvium
 
speaking
 
understand
 
higher
 

Strictly

 

snowstorm

 

explain

 

instance

 

solution

 

magnetic


discharges

 

electrical

 

submarine

 

disorder

 

prodigious

 

thirty

 

result

 
Australia
 
height
 

preface


transatlantic

 

latitudes

 
Storms
 

connected

 

degrees

 

vicinity

 
circuit
 

regions

 

mathematic

 
navigation

routine

 
loadstone
 

polarized

 

immensity

 
realize
 

depths

 

diminutions

 

temperature

 

proportionate

 

oceanic


shipwreck

 
twenty
 
working
 

disturbed

 

regular

 

intervals

 

intermittent

 

impose

 

calculations

 
seaman