FREE BOOKS

Author's List




PREV.   NEXT  
|<   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61  
62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   >>   >|  
of the language. For numbers, though they must be numbers of something, may be numbers of anything; and therefore, as we need not, when using an algebraical symbol (which represents all numbers without distinction), or an arithmetical number, picture to ourselves all that it stands for, we may picture to ourselves (and this not as a sign of things, but as being itself a thing) the number or symbol itself as conveniently as any other single thing. That we are conscious of the numbers or symbols, in their character of things, and not of mere signs, is shown by the fact that our whole process of reasoning is carried on by predicating of them the properties of things. Another reason why the propositions in arithmetic and algebra have been thought merely verbal, is that they seem to be _identical_ propositions. But in 'Two pebbles and one pebble are equal to three pebbles,' equality but not identity is affirmed; the subject and predicate, though names of the same objects, being names of them in different states, that is, as producing different impressions on the senses. It is on such inductive truths, resting on the evidence of sense, that the Science of Number is based; and it is, therefore, like the other deductive sciences, an inductive science. It is also, like them, hypothetical. Its inductions are the definitions (which, as in geometry, assert a fact as well as explain a name) of the numbers, and two axioms, viz. The sums of equals are equal; the differences of equals are equal. These axioms, and so-called definitions are themselves exactly, and not merely hypothetically, true. Yet the conclusions are true only on the assumption that, 1 = 1, i.e. that all the numbers are numbers of the same or equal units. Otherwise, the certainty in arithmetical processes, as in those of geometry or mechanics, is not _mathematical_, i.e. unconditional certainty, but only certainty of inference. It is the enquiry (which can be gone through once for all) into the inferences which can be drawn from assumptions, which properly constitutes all demonstrative science. New conclusions may be got as well from fictitious as from real inductions; and this is even consciously done, viz. in the _reductio ad absurdum_, in order to show the falsity of an assumption. It has even been argued that all ratiocination rests, in the last resort, on this process. But as this is itself syllogistic, it is useless, as a proof of a syllogism, against a man w
PREV.   NEXT  
|<   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61  
62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   >>   >|  



Top keywords:

numbers

 
things
 

certainty

 
propositions
 

process

 

pebbles

 

geometry

 

assumption

 

conclusions

 

equals


inductions

 

science

 
definitions
 

axioms

 

inductive

 

picture

 
number
 

arithmetical

 
symbol
 

mathematical


mechanics
 

differences

 

processes

 

unconditional

 

algebraical

 

enquiry

 

inference

 

Otherwise

 

called

 

hypothetically


argued

 

ratiocination

 

falsity

 
resort
 
syllogism
 

syllogistic

 

useless

 
absurdum
 

assumptions

 

properly


constitutes

 

inferences

 

demonstrative

 

consciously

 

reductio

 
language
 

fictitious

 
thought
 

verbal

 

single