FREE BOOKS

Author's List




PREV.   NEXT  
|<   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72  
73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   >>   >|  
nced by the heat caused by the current passing through the battery. Age of Battery. Another factor which should be considered in connection with capacity is the age of the battery. New batteries often do not give their rated capacity when received from the manufacturer. This is due to the methods of making the plates. The "paste" plates, such as are used in automobiles, are made by applying oxides of lead, mixed with a liquid, which generally is dilute sulphuric acid, to the grids. These oxides must be subjected to a charging current in order to produce the spongy lead and lead peroxide. After the charge, they must be discharged, and then again charged. This is necessary because not all of the oxides are changed to active material on one charge, and repeated charges and discharges are required to produce the maximum amount of active materials. Some manufacturers do not charge and discharge a battery a sufficient number of times before sending it out, and after a battery is put into use, its capacity will increase for some time, because more active material is produced during each charge. Another factor which increases the capacity of a battery after it is put into use is the tendency of the positive active material to become more porous after the battery is put through the cycles of charge and discharge. This results in an increase in capacity for a considerable time after the battery is put into use. When, a battery has been in use for some time, a considerable portion of the active material will have fallen from the positive plates, and, a decrease in capacity will result. Such a battery will charge faster than a new one because the amount of sulphate which has formed when the battery is discharged is less than in a newer battery. Hence, the time required to reduce this sulphate will be less, and the battery will "come up" faster on charge, although the specific gravity of the electrolyte may not rise to 1.280. ======================================================================== CHAPTER 8. INTERNAL RESISTANCE. -------------------- The resistance offered by a storage battery to the flow of a current through it results in a loss of voltage, and in heating. Its value should be as low as possible, and, in fact, it is almost negligible even I in small batteries, seldom rising above 0.05 ohm. On charge, it causes the charging voltage to be higher and on discharge causes a loss of voltage. Fig. 26 sh
PREV.   NEXT  
|<   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72  
73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   >>   >|  



Top keywords:
battery
 

charge

 

capacity

 

active

 

material

 

discharge

 
plates
 
current
 
oxides
 

voltage


sulphate

 

results

 

discharged

 
produce
 

required

 

amount

 

charging

 

faster

 

batteries

 

positive


increase

 

considerable

 

Another

 

factor

 
reduce
 

formed

 

result

 

fallen

 
portion
 

decrease


RESISTANCE

 

seldom

 
negligible
 

rising

 
higher
 

electrolyte

 

gravity

 

specific

 
CHAPTER
 

storage


heating
 
offered
 

resistance

 

INTERNAL

 

cycles

 

automobiles

 
methods
 

making

 

applying

 

sulphuric