FREE BOOKS

Author's List




PREV.   NEXT  
|<   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118  
119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   >>   >|  
" The wiring as shown in Figures 41 and 42 is probably not the same as will be found on a rheostat which may be bought, but when installing a rheostat, the wiring should be examined to make sure that the "live" wire is connected to the rheostat resistance and does not connect directly to the charging circuit. If necessary, change the wiring to agree with Figures 41 and 42. Figures 43 and 44 show the wiring of the charging circuits. In Figure 43 each battery has a double pole, double throw knife switch. This is probably the better layout, since any battery may be connected in the circuit by throwing down the knife switch, and any battery may be cut out by throwing the switch up. With this wiring layout, any number of batteries from one to ten may be cut-in by means of the switches. Thus, to charge five batteries, switches 1 to 5 are thrown down, and switches 5 to 10 are thrown up, thereby short-circuiting them. [Fig. 43 Wiring for a charging circuit, using a DPDT switch for each battery; and Fig. 44 Wiring for a charging circuit, using jumpers to connect batteries in series] Figure 44 shows a ten-battery charging circuit on which the batteries are connected in series by means of jumpers fitted with lead coated test clips, as shown. This layout is not as convenient as that shown in Figure 43, but is less expensive. Using Motor-Generator Sets [Fig. 45 Ten battery motor-generator charging set] Where no direct current supply is available, a motor-generator or a rectifier must be installed. The motor-generator is more expensive than a rectifier, but is preferred by some service stations because it is extremely flexible as to voltage and current, is easily operated, is free from complications, and has no delicate parts to cause trouble. Motor-Generator sets are made by a number of manufacturers. Accompanying these sets are complete instructions for installation and operation, and we will not attempt to duplicate such instructions in this book. Rules to assist in selecting the equipment will, however, be given. Except in very large service stations, a 40 volt generator is preferable. It requires approximately 2.5 volts per cell to overcome the voltage of a battery in order to charge it, and hence the 40 volt generator has a voltage sufficient to charge 15 cells in series on one charging line. Five 6 volt batteries may therefore be charged at one time on each line. With a charging rate of 10 amperes
PREV.   NEXT  
|<   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118  
119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   >>   >|  



Top keywords:

charging

 

battery

 

circuit

 
generator
 

batteries

 
wiring
 

switch

 

connected

 

series

 
Figure

charge

 

voltage

 

Figures

 

layout

 

rheostat

 

switches

 

number

 
stations
 
service
 
instructions

rectifier

 

current

 
jumpers
 

Wiring

 

expensive

 

Generator

 

thrown

 
double
 

connect

 

throwing


operation

 

attempt

 

installation

 

assist

 

complete

 

duplicate

 

complications

 
delicate
 

operated

 
easily

manufacturers

 

Accompanying

 

selecting

 

trouble

 

sufficient

 

amperes

 

charged

 

overcome

 

flexible

 

Except