FREE BOOKS

Author's List




PREV.   NEXT  
|<   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74  
75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   >>   >|  
negligible factor. 3. Active Material. This includes the resistance of the active materials and the electrolyte in the pores of the active materials. This varies considerably during charge and discharge. It has been found that the resistance of the peroxide plate changes much more than that of the lead plate. The change in resistance of the positive plate is especially marked near the end of a discharge. The composition of the active material, and the contact between it and the grid affect the resistance considerably. During charge, the current is sent into the cell from an external source. The girds therefore carry most of the current. The active material which first reacts with the acid is that near the surface of the plate, and the acid formed by the charging current mixes readily with the main body of electrolyte. Gradually, the charging action takes place in the inner portions of the plate, and concentrated acid is formed in the pores of the plate. As the sulphate is removed, however, the acid has little difficulty in mixing with the main body of electrolyte. The change in resistance on the charge is therefore not considerable. During discharge, the chemical action also begins at the surface of the plates and gradually moves inward. In this case, however, sulphate is formed on the surface first, and it becomes increasingly difficult for the fresh acid from the electrolyte to diffuse into the plates so as to replace the acid which has been greatly diluted there by the discharge actions. There is therefore an increase in resistance because of the dilution of the acid at the point of activity. Unless a cell is discharged too far, however, the increase in resistance is small. If a battery is allowed to stand idle for a long time it gradually discharges itself, as explained in Chapter 10. This is due to the formation of a tough coating of crystallized lead sulphate, which is practically an insulator. These crystals gradually cover and enclose the active material. The percentage change is not high, and generally amounts to a few per cent only. The chief damage caused by the excessive sulphation is therefore not an increase in resistance, but consists chiefly of making a poor contact between active material and grid, and of removing much of the active material from action by covering it. ======================================================================== CHAPTER 9. CARE OF THE BATTERY ON THE CAR. ---
PREV.   NEXT  
|<   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74  
75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   >>   >|  



Top keywords:
resistance
 

active

 

material

 

discharge

 

electrolyte

 

increase

 
change
 
current
 
gradually
 

sulphate


formed

 

action

 

surface

 
charge
 

During

 

charging

 

plates

 

materials

 

considerably

 

contact


formation

 

Unless

 

dilution

 

activity

 
Chapter
 

explained

 

allowed

 

battery

 
discharges
 

discharged


chiefly

 

making

 
consists
 

excessive

 
sulphation
 

removing

 

covering

 

BATTERY

 
CHAPTER
 

caused


damage
 
crystals
 

enclose

 

insulator

 

crystallized

 

practically

 
percentage
 

generally

 

amounts

 

coating