FREE BOOKS

Author's List




PREV.   NEXT  
|<   801   802   803   804   805   806   807   808   809   810   811   812   813   814   815   816   817   818   819   820   821   822   823   824   825  
826   827   828   829   830   831   832   833   834   835   836   837   838   839   840   841   842   843   844   845   846   847   >>  
uations 28 x + 10 = 19 y + 2 = 15 z + 4. To solve the equations 28 x + 10 = 19 y + 2, or y = x + (9 x + 8) / 19, let m = (9 x + 8) / 19, we have then x = 2 m + (m - 8) / 9. Let (m - 8) / 9 = m'; then m = 9 m' + 8; hence x = 18 m' + 16 + m' = 19 m' + 16 . . . (1). Again, since 28 x + 10 = 15 z + 4, we have 15 z = 28 x + 6, or z = 2 x - (2 x - 6) / 15. Let (2 x - 6) / 15 = n; then 2 x = 15 n + 6, and x = 7 n + 3 + n / 2. Let n / 2 = n'; then n = 2 n'; consequently x = 14 n' + 3 + n' = 15 n' + 3 . . . (2). Equating the above two values of x, we have 15 n' + 3 = 19 m' + 16; whence n' = m' + (4 m' + 13) / 15. Let (4 m' + 13) / 15 = p; we have then 4 m' = 15 p - 13, and m' = 4 p - (p + 13) / 4. Let (p + 13) / 4 = p'; then p = 4 p' - 13; whence m' = 16 p' - 52 - p' = 15 p' - 52. Now in this equation p' may be any number whatever, provided 15 p' exceed 52. The smallest value of p' (which is the one here wanted) is therefore 4; for 15 x 4 = 60. Assuming therefore p' = 4, we have m' = 60 - 52 = 8; and consequently, since x = 19 m' + 16, x = 19 x 8 + 16 = 168. The number required is consequently 28 x 168 + 10 = 4714. Having found the number 4714 for the first of the era, the correspondence of the years of the era and of the period is as follows:-- Era, 1, 2, 3, ... x, Period, 4714, 4715, 4716, ... 4713 + x; from which it is evident, that if we take P to represent the year of the Julian period, and x the corresponding year of the Christian era, we shall have P = 4713 + x, and x = P - 4713. With regard to the numeration of the years previous to the commencement of the era, the practice is not uniform. Chronologists, in general, reckon the year preceding the first of the era -1, the next preceding -2, and so on. In this case Era, -1, -2, -3, ... -x, Period, 4713, 4712, 4711, ... 4714 - x; whence P = 4714 - x, and x = 4714 - P. But astronomers, in order to preserve the uniformity of computation, make the series of years proceed without interruption, and reckon the year preceding the first of the era 0. Thus Era, 0, -1, -2, ... -x, Period, 4713, 4712, 4711, ... 4713 - x; therefore, in this case P = 4713 - x, and x = 4713 - P. _Reformation of the Calendar._--The ancient church calendar was founded on two suppositions, both erroneous, namely, that the year contains 3651/4 days,
PREV.   NEXT  
|<   801   802   803   804   805   806   807   808   809   810   811   812   813   814   815   816   817   818   819   820   821   822   823   824   825  
826   827   828   829   830   831   832   833   834   835   836   837   838   839   840   841   842   843   844   845   846   847   >>  



Top keywords:
preceding
 

Period

 
number
 

period

 
reckon
 

general

 

regard

 
Chronologists
 

numeration


previous

 
practice
 

uniform

 

commencement

 

founded

 

calendar

 
church
 

ancient

 
suppositions

erroneous
 

Calendar

 

Reformation

 

uniformity

 

computation

 

preserve

 

astronomers

 

series

 

interruption


proceed

 

Having

 

equation

 
values
 

exceed

 

provided

 
Equating
 

equations

 

uations


smallest

 

evident

 
Christian
 
Julian
 

represent

 

Assuming

 
wanted
 

required

 

correspondence