FREE BOOKS

Author's List




PREV.   NEXT  
|<   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63  
64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   >>   >|  
ether _transversal_. The most familiar illustration of the interference of sound-waves is furnished by the _beats_ produced by two musical sounds slightly out of unison. When two tuning-forks in perfect unison are agitated together the two sounds flow without roughness, as if they were but one. But, by attaching with wax to one of the forks a little weight, we cause it to vibrate more slowly than its neighbour. Suppose that one of them performs 101 vibrations in the time required by the other to perform 100, and suppose that at starting the condensations and rarefactions of both forks coincide. At the 101st vibration of the quicker fork they will again coincide, that fork at this point having gained one whole vibration, or one whole wavelength, upon the other. But a little reflection will make it clear that, at the 50th vibration, the two forks condensation where the other tends to produce a rarefaction; by the united action of the two forks, therefore, the sound is quenched, and we have a pause of silence. This occurs where one fork has gained _half a wavelength_ upon the other. At the 101st vibration, as already stated, we have coincidence, and, therefore, augmented sound; at the 150th vibration we have again a quenching of the sound. Here the one fork is _three half-waves_ in advance of the other. In general terms, the waves conspire when the one series is an _even_ number of half-wave lengths, and they destroy each other when the one series is an _odd_ number of half-wave lengths in advance of the other. With two forks so circumstanced, we obtain those intermittent shocks of sound separated by pauses of silence, to which we give the name of beats. By a suitable arrangement, moreover, it is possible to make one sound wholly extinguish another. Along four distinct lines, for example, the vibrations of the two prongs of a tuning-fork completely blot each other out.[12] The _pitch_ of sound is wholly determined by the rapidity of the vibration, as the _intensity_ is by the amplitude. What pitch is to the ear in acoustics, colour is to the eye in the undulatory theory of light. Though never seen, the lengths of the waves of light have been determined. Their existence is proved _by their effects_, and from their effects also their lengths may be accurately deduced. This may, moreover, be done in many ways, and, when the different determinations are compared, the strictest harmony is found to exist between them. This c
PREV.   NEXT  
|<   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63  
64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   >>   >|  



Top keywords:
vibration
 

lengths

 
wholly
 

series

 
vibrations
 
advance
 
gained
 

number

 

silence

 

coincide


determined

 

effects

 

sounds

 

wavelength

 

unison

 

tuning

 

obtain

 

circumstanced

 

shocks

 

suitable


destroy

 

arrangement

 

pauses

 

intermittent

 
separated
 
extinguish
 

accurately

 

deduced

 

existence

 

proved


harmony

 
determinations
 
compared
 

strictest

 

rapidity

 

completely

 

prongs

 

intensity

 

amplitude

 
theory

Though
 
undulatory
 

acoustics

 

colour

 
distinct
 

action

 

vibrate

 

weight

 

attaching

 
slowly