FREE BOOKS

Author's List




PREV.   NEXT  
|<   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80  
81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   >>   >|  
-undulations in the marginal waves, we have a luminous band, but one of considerably less intensity than the undiffracted central band. With a marginal difference of path of four semi-undulations we have a second extinction of the entire beam, because here the beam can be divided into four equal parts, every two of which quench each other. A second space of absolute darkness will therefore correspond to the obliquity producing this difference. In this way we might proceed further, the general result being that, whenever the direction of wave-motion is such as to produce a marginal difference of path of an _even_ number of semi-undulations, we have complete extinction; while, when the marginal difference is an _odd_ number of semi-undulations, we have only partial extinction, a portion of the beam remaining as a luminous band. A moment's reflection will make it plain that the wider the slit the less will be the obliquity of direction needed to produce the necessary difference of path. With a wide slit, therefore, the bands, as observed, will be closer together than with a narrow one. It is also plain that the shorter the wave, the less will be the obliquity required to produce the necessary retardation. The maxima and minima of violet light must therefore fall nearer to the centre than the maxima and minima of red light. The maxima and minima of the other colours fall between these extremes. In this simple way the undulatory theory completely accounts for the extraordinary appearance above referred to. When a slit and telescope are used, instead of the slit and naked eye, the effects are magnified and rendered more brilliant. Looking, moreover, through a properly adjusted telescope with a small circular aperture in front of it, at a distant point of light, the point is seen encircled by a series of coloured bands. If monochromatic light be used, these bands are simply bright and dark, but with white light the circles display iris-colours. If a slit be shortened so as to form a square aperture, we have two series of spectra at right angles to each other. The effects, indeed, are capable of endless variation by varying the size, shape, and number of the apertures through which the point of light is observed. Through two square apertures, with their corners touching each other as at A, Schwerd observed the appearance shown in fig. 20. Adding two others to them, as at B, he observed the appearance represented in fig. 2
PREV.   NEXT  
|<   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80  
81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   >>   >|  



Top keywords:
difference
 

observed

 

undulations

 

marginal

 

obliquity

 
produce
 
minima
 

appearance

 

maxima

 
number

extinction

 

luminous

 
series
 

effects

 

telescope

 
colours
 

square

 
aperture
 

apertures

 
direction

Adding

 

circular

 

adjusted

 
properly
 
varying
 

Schwerd

 

corners

 
touching
 
rendered
 

brilliant


Through

 
magnified
 

Looking

 

represented

 
circles
 

display

 

simply

 

bright

 

shortened

 
spectra

referred

 
monochromatic
 

endless

 

variation

 

distant

 

encircled

 

coloured

 

angles

 

capable

 
violet