FREE BOOKS

Author's List




PREV.   NEXT  
|<   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93  
94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   >>   >|  
proportionate increase of elasticity; and this accounts for the diminished velocity of light in refracting bodies. We here reach a point of cardinal importance. In virtue of the crystalline architecture that we have been considering, the ether in many crystals possesses different densities, and different elasticities, in different directions; the consequence is, that in such crystals light is transmitted with different velocities. And as refraction depends wholly upon the change of velocity on entering the refracting medium, being greatest where the change of velocity is greatest, we have in many crystals two different refractions. By such crystals a beam of light is divided into two. This effect is called _double refraction_. In ordinary water, for example, there is nothing in the grouping of the molecules to interfere with the perfect homogeneity of the ether; but, when water crystallizes to ice, the case is different. In a plate of ice the elasticity of the ether in a direction perpendicular to the surface of freezing is different from what it is parallel to the surface of freezing; ice is, therefore, a double refracting substance. Double refraction is displayed in a particularly impressive manner by Iceland spar, which is crystallized carbonate of lime. The difference of ethereal density in two directions in this crystal is very great, the separation of the beam into the two halves being, therefore, particularly striking. I am unwilling to quit this subject before raising it to unmistakable clearness in your minds. The vibrations of light being transversal, the elasticity concerned in the propagation of any ray is the elasticity at right angles to the direction of propagation. In Iceland spar there is one direction round which the crystalline molecules are symmetrically built. This direction is called the axis of the crystal. In consequence of this symmetry the elasticity is the same in all directions perpendicular to the axis, and hence a ray transmitted along the axis suffers no double refraction. But the elasticity along the axis is greater than the elasticity at right angles to it. Consider, then, a system of waves crossing the crystal in a direction perpendicular to the axis. Two directions of vibration are open to such waves: the ether particles can vibrate parallel to the axis or perpendicular to it. _They do both_, and hence immediately divide themselves into two systems propagated with different veloci
PREV.   NEXT  
|<   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93  
94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   >>   >|  



Top keywords:
elasticity
 

direction

 

perpendicular

 

crystals

 

directions

 
refraction
 
refracting
 

double

 
velocity
 

crystal


molecules

 

called

 
greatest
 

Iceland

 
propagation
 

freezing

 
surface
 
angles
 

parallel

 

crystalline


consequence

 

change

 

transmitted

 

importance

 

cardinal

 

diminished

 

proportionate

 

symmetrically

 

raising

 

subject


unwilling

 
unmistakable
 

clearness

 

transversal

 

concerned

 
vibrations
 

symmetry

 
vibrate
 

particles

 
propagated

veloci
 

systems

 
immediately
 
divide
 

vibration

 

suffers

 
greater
 

bodies

 
crossing
 

system