FREE BOOKS

Author's List




PREV.   NEXT  
|<   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109  
110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   >>   >|  
res which reveal themselves under the scrutiny of polarized light. When a square of common window-glass is placed between the Nicols, you see its dim outline, but it exerts no action on the polarized light. Held for a moment over the flame of a spirit-lamp, on reintroducing it between the Nicols, light flashes out upon the screen. Here, as in the case of mechanical action, you have luminous spaces of strain divided by dark neutral axes from spaces of pressure. [Illustration: Fig. 40.] [Illustration: Fig. 41.] Let us apply the heat more symmetrically. A small square of glass is perforated at the centre, and into the orifice a bit of copper wire is introduced. Placing the square between the prisms, and heating the wire, the heat passes by conduction to the glass, through which it spreads from the centre outwards. You immediately see four luminous quadrants and a dim cross, which becomes gradually blacker, by comparison with the adjacent brightness. And as, in the case of pressure, we produced colours, so here also, by the proper application of heat, gorgeous chromatic effects may be evoked. The condition necessary to the production of these colours may be rendered permanent by first heating the glass sufficiently, and then cooling it, so that the chilled mass shall remain in a state of permanent strain and pressure. Two or three examples will illustrate this point. Figs. 40 and 41 represent the figures obtained with two pieces of glass thus prepared; two rectangular pieces of unannealed glass, crossed and placed between the polarizer and analyzer, exhibit the beautiful iris fringes represented in fig. 42. [Illustration: Fig. 42.] Sec. 6. _Circular Polarization._ But we have to follow the ether still further into its hiding-places. Suspended before you is a pendulum, which, when drawn aside and liberated, oscillates to and fro. If, when the pendulum is passing the middle point of its excursion, I impart a shock to it tending to drive it at right angles to its present course, what occurs? The two impulses compound themselves to a vibration oblique in direction to the former one, but the pendulum still oscillates in _a plane_. But, if the rectangular shock be imparted to the pendulum when it is at the limit of its swing, then the compounding of the two impulses causes the suspended ball to describe, not a straight line, but an ellipse; and, if the shock be competent of itself to produce a vibration of the sam
PREV.   NEXT  
|<   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109  
110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   >>   >|  



Top keywords:

pendulum

 

Illustration

 

pressure

 
square
 
impulses
 

heating

 

luminous

 

polarized

 
strain
 

colours


centre
 

oscillates

 

spaces

 

action

 

pieces

 

vibration

 

permanent

 

Nicols

 
rectangular
 

places


Polarization

 

exhibit

 

hiding

 

figures

 

represent

 

Circular

 

follow

 

prepared

 

represented

 

crossed


fringes

 

polarizer

 
obtained
 

analyzer

 

illustrate

 

beautiful

 

unannealed

 
compounding
 
suspended
 

imparted


describe

 
competent
 

produce

 

ellipse

 
straight
 
direction
 

oblique

 

passing

 

middle

 

excursion