FREE BOOKS

Author's List




PREV.   NEXT  
|<   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103  
104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   >>   >|  
action of the prisms and that of the two plates of tourmaline. The magnified images of these plates, with their axes at right-angles to each other, are now before you. Introducing between them a film of selenite, you observe that by turning the film round it may be placed in a position where it has no power to abolish the darkness of the superposed portions of the tourmalines. Why is this? The answer is, that in the gypsum there are two directions, at right angles to each other, in which alone vibrations can take place, and that in our present experiment one of these directions is parallel to one of the axes of the tourmaline, and the other parallel to the other axis. When this is the case, the film exercises no sensible action upon the light. But now I turn the film so as to render its directions of vibration _oblique_ to the two tourmaline axes; then, you see it exercises the power, demonstrated in the last lecture, of partially restoring the light. [Illustration: Fig. 36.] Let us now mount our Nicol prisms, and cross them as we crossed the tourmaline. Introducing our film of gypsum between them, you notice that in one particular position the film has no power whatever over the field of view. But, when the film is turned a little way round, the light passes. We have now to understand the mechanism by which this is effected. First, then, we have a prism which receives the light from the electric lamp, and which is called the _polarizer_. Then we have the plate of gypsum (supposed to be placed at S, fig. 36), and then the prism in front, which is called the _analyzer_. On its emergence from the first prism, the light is polarized; and, in the particular case now before us, its vibrations are executed in a horizontal plane. We have to examine what occurs when the two directions of vibration in the interposed gypsum are oblique to the horizon. Draw a rectangular cross (A B, C D, fig. 37) to represent these two directions. Draw a line (_a_ _b_) to represent the amplitude of the horizontal vibration on the emergence of the light from the first Nicol. Let fall from each end of this line two perpendiculars (_a_ _c_, _a_ _f_, _b_ _d_, _b_ _e_) on the two arms of the cross; then the distances (_c_ _d_, _e_ _f_) between the feet of these perpendiculars represent the amplitudes of two rectangular vibrations, which are the _components_ of the first single vibration. Thus the polarized ray, when it enters the gypsum, is reso
PREV.   NEXT  
|<   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103  
104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   >>   >|  



Top keywords:

directions

 

gypsum

 

vibration

 
tourmaline
 

represent

 

vibrations

 

exercises

 

rectangular

 
oblique
 

parallel


polarized

 
action
 

emergence

 
angles
 

Introducing

 

prisms

 

position

 
plates
 

perpendiculars

 

horizontal


called

 
supposed
 

polarizer

 

electric

 

receives

 

analyzer

 
amplitudes
 

distances

 
components
 

single


enters

 

amplitude

 

occurs

 

examine

 
interposed
 
horizon
 
executed
 

magnified

 

images

 

experiment


present

 

answer

 
turning
 

observe

 

selenite

 

abolish

 
tourmalines
 

portions

 

superposed

 

darkness