FREE BOOKS

Author's List




PREV.   NEXT  
|<   601   602   603   604   605   606   607   608   609   610   611   612   613   614   615   616   617   618   619   620   621   622   623   624   625  
626   627   628   629   630   631   632   633   634   635   636   637   638   639   640   641   642   643   644   645   646   647   648   649   650   >>   >|  
ution with its swarming bacteria for five minutes. In the soft succulent condition in which they exist in the solution not one of them escapes destruction. The same is true of the turnip infusion if it be inoculated with the living bacteria only-the aerial dust being carefully excluded. In both cases the dead organisms sink to the bottom of the liquid, and without re-inoculation no fresh organisms will arise. But the case is entirely different when we inoculate our turnip infusion with the desiccated germinal matter afloat in the air. The 'death-point' of bacteria is the maximum temperature at which they can live, or the minimum temperature at which they cease to live. If, for example, they survive a temperature of 140 deg., and do not survive a temperature of 150 deg., the death-point lies somewhere between these two temperatures. Vaccine lymph, for example, is proved by Messrs. Braidwood and Vacher to be deprived of its power of infection by brief exposure to a temperature between 140 deg. and 150 deg. Fahr. This may be regarded as the death-point of the lymph, or rather of the particles diffused in the lymph, which constitute the real _contagium_. If no time, however, be named for the application of the heat, the term 'death-point' is a vague one. An infusion, for example, which will resist five hours' continuous exposure to the boiling temperature, will succumb to five days' exposure to a temperature 50 deg. Fahr. below that of boiling. The fully developed soft bacteria of putrefying liquids are not only killed by five minutes' boiling, but by less than a single minute's boiling--indeed, they are slain at about the same temperature as the vaccine. The same is true of the plastic, active bacteria of the turnip infusion [Footnote: In my paper in the 'Philosophical Transactions' for 1876, I pointed out and illustrated experimentally the difference, as regards rapidity of development, between water-germs and air-germs; the growth from the already softened water-germs proving to be practically as rapid as from developed bacteria. This preparedness of the germ for rapid development is associated with its preparedness for rapid destruction.] But, instead of choosing a putrefying liquid for inoculation, let us prepare and employ our inoculating substance in the following simple way:-Let a small wisp of hay, desiccated by age, be washed in a glass of water, and let a perfectly sterilised turnip infusion be inoculated
PREV.   NEXT  
|<   601   602   603   604   605   606   607   608   609   610   611   612   613   614   615   616   617   618   619   620   621   622   623   624   625  
626   627   628   629   630   631   632   633   634   635   636   637   638   639   640   641   642   643   644   645   646   647   648   649   650   >>   >|  



Top keywords:

temperature

 

bacteria

 
infusion
 

turnip

 

boiling

 
exposure
 

inoculation

 

survive

 
preparedness
 

desiccated


development

 

organisms

 

putrefying

 

destruction

 
developed
 

minutes

 

inoculated

 

liquid

 

succumb

 

Philosophical


Transactions

 

killed

 

plastic

 

vaccine

 

Footnote

 

single

 

liquids

 

active

 

minute

 
growth

simple

 

substance

 

inoculating

 
prepare
 
employ
 
perfectly
 

sterilised

 

washed

 
choosing
 

experimentally


difference

 
illustrated
 
pointed
 
rapidity
 

continuous

 

practically

 
proving
 

softened

 

Messrs

 

bottom