FREE BOOKS

Author's List




PREV.   NEXT  
|<   610   611   612   613   614   615   616   617   618   619   620   621   622   623   624   625   626   627   628   629   630   631   632   633   634  
635   636   637   638   639   640   641   642   643   644   645   646   647   648   649   650   651   652   653   654   655   656   657   658   659   >>   >|  
e now separate as vapour which can recondense. After condensation gravity comes into effectual play, pulling the showers down upon the hills, and the rivers thus created through their gorges to the sea. Every raindrop which smites the mountain produces its definite amount of heat; every river in its course develops heat by the clash of its cataracts and the friction of its bed. In the act of condensation, moreover, the molecular work of vaporisation is accurately reversed. 'Compare, then, the primitive loss of solar warmth with the heat generated by the condensation of the vapour, and by the subsequent fall of the water from cloud to sea. They are mathematically equal to each other. No particle of vapour was formed and lifted without being paid for in the currency of solar heat; no particle returns as water to the sea without the exact quantitative restitution of that heat. There is nothing gratuitous in physical nature, no expenditure without equivalent gain, no gain without equivalent expenditure. With inexorable constancy the one accompanies the other, leaving no nook or crevice between them for spontaneity to mingle with the pure and necessary play of natural force. Has this uniformity of nature ever been broken? The reply is: 'Not to the knowledge of science.' What has been here stated regarding heat and gravity applies to the whole of inorganic nature. Let us take an illustration from chemistry. The metal zinc may be burnt in oxygen, a perfectly definite amount of heat being produced by the combustion of a given weight of the metal. But zinc may also be burnt in a liquid which contains a supply of oxygen--in water, for example. It does not in this case produce flame or fire, but it does produce heat which is capable of accurate measurement. But the heat of zinc burnt in water falls short of that produced in pure oxygen, the reason being that to obtain its oxygen from the water the zinc must first dislodge the hydrogen. It is in the performance of this molecular work that the missing heat is absorbed. Mix the liberated hydrogen with oxygen and cause them to recombine; the heat developed is mathematically equal to the missing heat. Thus in pulling the oxygen and hydrogen asunder an amount of heat is consumed which is accurately restored by their reunion. This leads up to a few remarks upon the Voltaic battery. It is not my design to dwell upon the technical features of this wonderful instrum
PREV.   NEXT  
|<   610   611   612   613   614   615   616   617   618   619   620   621   622   623   624   625   626   627   628   629   630   631   632   633   634  
635   636   637   638   639   640   641   642   643   644   645   646   647   648   649   650   651   652   653   654   655   656   657   658   659   >>   >|  



Top keywords:

oxygen

 

nature

 
amount
 

condensation

 

hydrogen

 
vapour
 

particle

 

expenditure

 
equivalent
 

accurately


mathematically

 

produce

 

produced

 

molecular

 
gravity
 

pulling

 

missing

 

definite

 

applies

 

stated


weight

 

chemistry

 

illustration

 

science

 

liquid

 

perfectly

 

combustion

 

inorganic

 

reunion

 
restored

consumed

 

recombine

 

developed

 
asunder
 
remarks
 
technical
 

features

 

wonderful

 
instrum
 

design


Voltaic

 
battery
 
liberated
 
knowledge
 

capable

 

accurate

 
supply
 

measurement

 

dislodge

 

performance