FREE BOOKS

Author's List




PREV.   NEXT  
|<   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276  
277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   >>   >|  
g made in France, and it was only after I had seen these tubes that I seriously considered the question of making a flying machine. I obtained a large quantity of them and found that they were very light, that they would stand enormously high pressures, and generate a very large quantity of steam. Upon going into a mathematical calculation of the whole subject, I found that it would be possible to make a machine on the aeroplane system, driven by a steam engine, which would be sufficiently strong to lift itself into the air. I first made drawings of a steam engine, and a pair of these engines was afterwards made. These engines are constructed, for the most part, of a very high grade of cast steel, the cylinders being only 3/32 of an inch thick, the crank shafts hollow, and every part as strong and light as possible. They are compound, each having a high-pressure piston with an area of 20 square inches, a low-pressure piston of 50.26 square inches, and a common stroke of 1 foot. When first finished they were found to weigh 300 lbs. each; but after putting on the oil cups, felting, painting, and making some slight alterations, the weight was brought up to 320 lbs. each, or a total of 640 lbs. for the two engines, which have since developed 362 horsepower with a steam pressure of 320 lbs. per square inch.' The result is remarkable, being less than 2 lbs. weight per horse-power, especially when one considers the state of development to which the steam engine had attained at the time these experiments were made. The fining down of the internal combustion engine, which has done so much to solve the problems of power in relation to weight for use with aircraft, had not then been begun, and Maxim had nothing to guide him, so far as work on the part of his predecessors was concerned, save the experimental engines of Stringfellow, which, being constructed on so small a scale in comparison with his own, afforded little guidance. Concerning the factor of power, he says: 'When first designing this engine, I did not know how much power I might require from it. I thought that in some cases it might be necessary to allow the high-pressure steam to enter the low-pressure cylinder direct, but as this would involve a considerable loss, I constructed a species of injector. This injector may be so adjusted that when the steam in the boiler rises above a certain predetermined point, say 300 lbs., to the square inch, it opens a valve and esc
PREV.   NEXT  
|<   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276  
277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   >>   >|  



Top keywords:

engine

 

pressure

 
engines
 

square

 

constructed

 
weight
 

injector

 

inches

 

strong

 

piston


machine

 

quantity

 
making
 

Stringfellow

 
predecessors
 
experimental
 
concerned
 

experiments

 

fining

 

internal


development

 

attained

 
combustion
 

relation

 

aircraft

 

problems

 
adjusted
 

species

 

direct

 

involve


considerable

 

boiler

 

predetermined

 

cylinder

 

factor

 

designing

 

Concerning

 
guidance
 

considers

 

afforded


thought

 

France

 
require
 
comparison
 

hollow

 

mathematical

 

shafts

 
calculation
 

compound

 

pressures