FREE BOOKS

Author's List




PREV.   NEXT  
|<   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309  
310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   >>  
show, however, that prophecy in any direction is most unsafe. V. THE HORIZONTALLY-OPPOSED ENGINE Among the first internal combustion engines to be taken into use with aircraft were those of the horizontally-opposed four-stroke cycle type, and, in every case in which these engines were used, their excellent balance and extremely even torque rendered them ideal-until the tremendous increase in power requirements rendered the type too long and bulky for placing in the fuselage of an aeroplane. As power increased, there came a tendency toward placing cylinders radially round a central crankshaft, and, as in the case of the early Anzani, it may be said that the radial engine grew out of the horizontal opposed piston type. There were, in 1910--that is, in the early days of small power units, ten different sizes of the horizontally opposed engine listed for manufacture, but increase in power requirements practically ruled out the type for air work. The Darracq firm were the leading makers of these engines in 1910; their smallest size was a 24 horsepower engine, with two cylinders each of 5.1 inches bore by 4.7 inches stroke. This engine developed its rated power at 1,500 revolutions per minute, and worked out at a weight of 5 lbs. per horse-power. With these engines the cranks are so placed that two regular impulses are given to the crankshaft for each cycle of working, an arrangement which permits of very even balancing of the inertia forces of the engine. The Darracq firm also made a four-cylindered horizontal opposed piston engine, in which two revolutions were given to the crankshaft per revolution, at equal angular intervals. The Dutheil-Chambers was another engine of this type, and had the distinction of being the second largest constructed. At 1,000 revolutions per minute it developed 97 horse-power; its four cylinders were each of 4.93 inches bore by 11.8 inches stroke--an abnormally long stroke in comparison with the bore. The weight--which owing to the build of the engine and its length of stroke was bound to be rather high, actually amounted to 8.2 lbs. per horse-power. Water cooling was adopted, and the engine was, like the Darracq four-cylinder type, so arranged as to give two impulses per revolution at equal angular intervals of crankshaft rotation. One of the first engines of this type to be constructed in England was the Alvaston, a water-cooled model which was made in 20, 30, and 50 brake hor
PREV.   NEXT  
|<   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309  
310   311   312   313   314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   >>  



Top keywords:

engine

 

stroke

 
engines
 

opposed

 

crankshaft

 
inches
 

cylinders

 

revolutions

 

Darracq

 

requirements


constructed

 

placing

 
minute
 

intervals

 
angular
 
horizontal
 
increase
 

revolution

 

piston

 

horizontally


rendered

 

impulses

 
developed
 

weight

 

worked

 

cranks

 
regular
 

permits

 

arrangement

 

balancing


working

 

forces

 

inertia

 

cylindered

 

cylinder

 

arranged

 

rotation

 
adopted
 

cooling

 

England


Alvaston

 

cooled

 
amounted
 
largest
 

distinction

 

Chambers

 

length

 
abnormally
 

comparison

 

Dutheil