FREE BOOKS

Author's List




PREV.   NEXT  
|<   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278  
279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   >>   >|  
water heater, was then constructed. This boiler is about 4 1/2 feet wide at the bottom, 8 feet long and 6 feet high. It weighs, with the casing, the dome, and the smoke stack and connections, a little less than 1,000 lbs. The water first passes through a system of small tubes--1/4 inch in diameter and 1/60 inch thick--which were placed at the top of the boiler and immediately over the large tubes.... This feed-water heater is found to be very effective. It utilises the heat of the products of combustion after they have passed through the boiler proper and greatly reduces their temperature, while the feed-water enters the boiler at a temperature of about 250 F. A forced circulation is maintained in the boiler, the feed-water entering through a spring valve, the spring valve being adjusted in such a manner that the pressure on the water is always 30 lbs. per square inch in excess of the boiler pressure. This fall of 30 lbs. in pressure acts upon the surrounding hot water which has already passed through the tubes, and drives it down through a vertical outside tube, thus ensuring a positive and rapid circulation through all the tubes. This apparatus is found to act extremely well.' Thus Maxim, who with this engine as power for his large aeroplane achieved free flight once, as a matter of experiment, though for what distance or time the machine was actually off the ground is matter for debate, since it only got free by tearing up the rails which were to have held it down in the experiment. Here, however, was a steam engine which was practicable for use in the air, obviously, and only the rapid success of the internal combustion engine prevented the steam-producing type from being developed toward perfection. The first designers of internal combustion engines, knowing nothing of the petrol of these days, constructed their examples with a view to using gas as fuel. As far back as 1872 Herr Paul Haenlein obtained a speed of about 10 miles an hour with a balloon propelled by an internal combustion engine, of which the fuel was gas obtained from the balloon itself. The engine in this case was of the Lenoir type, developing some 6 horse-power, and, obviously, Haenlein's flights were purely experimental and of short duration, since he used the gas that sustained him and decreased the lifting power of his balloon with every stroke of the piston of his engine. No further progress appears to have been made with the gas-consuming t
PREV.   NEXT  
|<   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278  
279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   >>   >|  



Top keywords:

engine

 

boiler

 
combustion
 

balloon

 

pressure

 
internal
 

spring

 

obtained

 

passed

 

Haenlein


temperature

 

circulation

 
experiment
 

matter

 
heater
 
constructed
 
piston
 

practicable

 

flights

 

producing


prevented

 

consuming

 
purely
 

success

 

tearing

 

duration

 
lifting
 

debate

 

decreased

 

stroke


ground

 

experimental

 

progress

 

Lenoir

 

machine

 

appears

 

propelled

 
sustained
 

developing

 

engines


knowing

 

designers

 
perfection
 
developed
 

petrol

 

examples

 

effective

 
immediately
 

utilises

 

reduces