FREE BOOKS

Author's List




PREV.   NEXT  
|<   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281  
282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   >>   >|  
itted to their first practicable flying machine the engine which made the historic first aeroplane flight; this engine developed 30 horse-power, and weighed only about 7 lbs. per horse-power developed, its design and workmanship being far ahead of any previous design in this respect, with the exception of the remarkable engine, designed by Manly, installed in Langley's ill-fated aeroplane--or 'aerodrome,' as he preferred to call it--tried in 1903. The light weight of the Wright brothers' engine did not necessitate a high number of revolutions per minute to get the requisite power; the speed was only 1,300 revolutions per minute, which, with a piston stroke of 3.94 inches, was quite moderate. Four cylinders were used, the cylinder diameter being 4.42 inches; the engine was of the vertical type, arranged to drive two propellers at a rate of about 350 revolutions per minute, gearing being accomplished by means of chain drive from crank-shaft end to propeller spindle. The methods adopted by the Wrights for obtaining a light-weight engine were of considerable interest, in view of the fact that the honour of first achieving flight by means of the driven plane belongs to them--unless Ader actually flew as he claimed. The cylinders of this first Wright engine were separate castings of steel, and only the barrels were jacketed, this being done by fixing loose, thin aluminium covers round the outside of each cylinder. The combustion head and valve pockets were cast together with the cylinder barrel, and were not water cooled. The inlet valves were of the automatic type, arranged on the tops of the cylinders, while the exhaust valves were also overhead, operated by rockers and push-rods. The pistons and piston rings were of the ordinary type, made of cast-iron, and the connecting rods were circular in form, with a hole drilled down the middle of each to reduce the weight. Necessity for increasing power and ever lighter weight in relation to the power produced has led to the evolution of a number of different designs of internal combustion engines. It was quickly realised that increasing the number of cylinders on an engine was a better way of getting more power than that of increasing the cylinder diameter, as the greater number of cylinders gives better torque-even turning effect--as well as keeping down the weight--this latter because the bigger cylinders must be more stoutly constructed than the small sizes; this fact ha
PREV.   NEXT  
|<   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281  
282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   >>   >|  



Top keywords:

engine

 

cylinders

 
weight
 

number

 

cylinder

 
revolutions
 

increasing

 

minute

 

arranged

 

inches


valves

 

Wright

 
diameter
 

piston

 
design
 
combustion
 
aeroplane
 

developed

 

flight

 

barrels


aluminium

 

rockers

 
jacketed
 

pistons

 

fixing

 

ordinary

 
overhead
 

pockets

 

automatic

 

cooled


barrel

 

operated

 

exhaust

 

covers

 

relation

 

turning

 

effect

 
torque
 

greater

 

keeping


constructed

 

stoutly

 
bigger
 
realised
 

quickly

 

middle

 

reduce

 
Necessity
 

drilled

 

connecting