FREE BOOKS

Author's List




PREV.   NEXT  
|<   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313  
314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   >>  
e engine, the transfer ports being formed in the main casting. The openings of these ports were controlled at both ends by the pistons, and the location of the ports appears to have made it necessary to take the exhaust from the bottom of one cylinder and from the top of the other. The carburetted mixture was drawn into the scavenging cylinders, and the usual deflectors were cast on the piston heads to assist in the scavenging and to prevent the fresh gas from passing out of the exhaust ports. VI. THE TWO-STROKE CYCLE ENGINE Although it has been little used for aircraft propulsion, the possibilities of the two-stroke cycle engine render some study of it desirable in this brief review of the various types of internal combustion engine applicable both to aeroplanes and airships. Theoretically the two-stroke cycle engine--or as it is more commonly termed, the 'two-stroke,' is the ideal power producer; the doubling of impulses per revolution of the crankshaft should render it of very much more even torque than the four-stroke cycle types, while, theoretically, there should be a considerable saving of fuel, owing to the doubling of the number of power strokes per total of piston strokes. In practice, however, the inefficient scavenging of virtually every two-stroke cycle engine produced nullifies or more than nullifies its advantages over the four-stroke cycle engine; in many types, too, there is a waste of fuel gases through the exhaust ports, and much has yet to be done in the way of experiment and resulting design before the two-stroke cycle engine can be regarded as equally reliable, economical, and powerful with its elder brother. The first commercially successful engine operating on the two-stroke cycle was invented by Mr Dugald Clerk, who in 1881 proved the design feasible. As is more or less generally understood, the exhaust gases of this engine are discharged from the cylinder during the time that the piston is passing the inner dead centre, and the compression, combustion, and expansion of the charge take place in similar manner to that of the four-stroke cycle engine. The exhaust period is usually controlled by the piston overrunning ports in the cylinder at the end of its working stroke, these ports communicating direct with the outer air--the complication of an exhaust valve is thus obviated; immediately after the escape of the exhaust gases, charging of the cylinder occurs, and the fresh gas may be
PREV.   NEXT  
|<   289   290   291   292   293   294   295   296   297   298   299   300   301   302   303   304   305   306   307   308   309   310   311   312   313  
314   315   316   317   318   319   320   321   322   323   324   325   326   327   328   329   330   331   332   >>  



Top keywords:

engine

 

stroke

 
exhaust
 

cylinder

 
piston
 

scavenging

 

combustion

 

passing

 

render

 

strokes


nullifies

 
design
 

doubling

 

controlled

 
brother
 
commercially
 
transfer
 

economical

 

powerful

 
successful

operating
 

advantages

 

Dugald

 

invented

 
reliable
 
formed
 

resulting

 

experiment

 

regarded

 

equally


proved
 

feasible

 

complication

 

direct

 

communicating

 

overrunning

 

working

 

charging

 

occurs

 
escape

obviated

 
immediately
 
period
 

discharged

 

understood

 
generally
 

similar

 
manner
 

charge

 
expansion