FREE BOOKS

Author's List




PREV.   NEXT  
|<   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68  
69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   >>   >|  
ould be obtained at once by drawing line _fD_, or 50 feet, to 16th distance. The other measurements obtained by 8th distance serve for nearer buildings. XXXVIII HOW TO MEASURE LONG DISTANCES SUCH AS A MILE OR UPWARDS The wonderful effect of distance in Turner's pictures is not to be achieved by mere measurement, and indeed can only be properly done by studying Nature and drawing her perspective as she presents it to us. At the same time it is useful to be able to test and to set out distances in arranging a composition. This latter, if neglected, often leads to great difficulties and sometimes to repainting. To show the method of measuring very long distances we have to work with a very small scale to the foot, and in Fig. 94 I have divided the base _AB_ into eleven parts, each part representing 10 feet. First draw _AS_ and _BS_ to point of sight. From _A_ draw _AD_ to 1/4 distance, and we obtain at 440 on line _BS_ four times the length of _AB_, or 110 feet x 4 = 440 feet. Again, taking the whole base and drawing a line from _S_ to 8th distance we obtain eight times 110 feet or 880 feet. If now we use the 16th distance we get sixteen times 110 feet, or 1,760 feet, one-third of a mile; by repeating this process, but by using the base at 1,760, which is the same length in perspective as _AB_, we obtain 3,520 feet, and then again using the base at 3,520 and proceeding in the same way we obtain 5,280 feet, or one mile to the archway. The flags show their heights at their respective distances from the base. By the scale at the side of the picture, _BO_, we can measure any height above or any depth below the perspective plane. [Illustration: Fig. 94.] _Note_.--This figure (here much reduced) should be drawn large by the student, so that the numbering, &c., may be made more distinct. Indeed, many of the other figures should be copied large, and worked out with care, as lessons in perspective. XXXIX FURTHER ILLUSTRATION OF LONG DISTANCES AND EXTENDED VIEWS An extended view is generally taken from an elevated position, so that the principal part of the landscape lies beneath the perspective plane, as already noted, and we shall presently treat of objects and figures on uneven ground. In the previous figure is shown how we can measure heights and depths to any extent. But when we turn to a drawing by Turner, such as the 'View from Richmond Hill', we feel that the only way to accomplish such
PREV.   NEXT  
|<   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68  
69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   >>   >|  



Top keywords:

distance

 
perspective
 

obtain

 
drawing
 

distances

 

figures

 

measure

 

heights

 

figure

 

length


DISTANCES

 

obtained

 
Turner
 

numbering

 

student

 

nearer

 
archway
 

copied

 
Indeed
 

distinct


height
 

measurements

 

reduced

 

respective

 

worked

 

Illustration

 

picture

 

lessons

 

previous

 

ground


uneven

 

presently

 

objects

 
depths
 
extent
 

Richmond

 

accomplish

 
EXTENDED
 

ILLUSTRATION

 

FURTHER


extended

 

principal

 

landscape

 

beneath

 

position

 
elevated
 

generally

 
XXXVIII
 

properly

 

studying