FREE BOOKS

Author's List




PREV.   NEXT  
|<   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86  
87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   >>   >|  
draw _KM_, thus completing the outer parallel square. Through _F_, where _PS_ intersects _MK_, draw _AV_ till it cuts the horizon in _V_, its vanishing point. From _V_ draw _VB_ cutting side _KE_ of outer square in _G_, and we have the four points _AFGB_, which are the four angles of the square required. Join _FG_, and the figure is complete. Any other side of the square might be given, such as _AF_. First through _A_ and _F_ draw _SC_, _SP_, then draw _Ao_, then through _o_ draw _CD_. From _C_ draw base of parallel square _CE_, and at _M_ through _F_ draw _MK_ cutting diagonal at _K_, which gives top of square. Now through _K_ draw _SE_, giving _KE_ the remaining side thereof, produce _AF_ to _V_, from _V_ draw _VB_. Join _FG_, _GB_, and _BA_, and the square required is complete. The student can try the remaining two sides, and he will find they work out in a similar way. LXXXII HOW TO DRAW SOLID FIGURES AT ANY ANGLE BY THE NEW METHOD As we can draw planes by this method so can we draw solids, as shown in these figures. The heights of the corners of the triangles are obtained by means of the vanishing scales _AS_, _OS_, which have already been explained. [Illustration: Fig. 152.] [Illustration: Fig. 153.] In the same manner we can draw a cubic figure (Fig. 154)--a box, for instance--at any required angle. In this case, besides the scale _AS_, _OS_, we have made use of the vanishing lines _DV_, _BV_, to corroborate the scale, but they can be dispensed with in these simple objects, or we can use a scale on each side of the figure as _a'o'S_, should both vanishing points be inaccessible. Let it be noted that in the scale _AOS_, _AO_ is made equal to _BC_, the height of the box. [Illustration: Fig. 154.] By a similar process we draw these two figures, one on the square, the other on the circle. [Illustration: Fig. 155.] [Illustration: Fig. 156.] LXXXIII POINTS IN SPACE The chief use of these figures is to show how by means of diagonals, horizontals, and perpendiculars almost any figure in space can be set down. Lines at any slope and at any angle can be drawn by this descriptive geometry. The student can examine these figures for himself, and will understand their working from what has gone before. Here (Fig. 157) in the geometrical square we have a vertical plane _AabB_ standing on its base _AB_. We wish to place a projection of this figure at a certain dist
PREV.   NEXT  
|<   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86  
87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   >>   >|  



Top keywords:

square

 

figure

 
Illustration
 

figures

 

vanishing

 

required

 

similar

 

student

 

remaining

 
cutting

parallel

 
complete
 
points
 
corroborate
 
height
 

simple

 

process

 

objects

 

dispensed

 

inaccessible


geometrical

 

understand

 

working

 

vertical

 

projection

 

standing

 

examine

 

POINTS

 
circle
 

LXXXIII


diagonals

 

horizontals

 

descriptive

 

geometry

 
perpendiculars
 
METHOD
 

diagonal

 
produce
 
thereof
 

giving


intersects
 
Through
 

completing

 

angles

 

horizon

 

heights

 

corners

 

triangles

 

solids

 

planes