FREE BOOKS

Author's List




PREV.   NEXT  
|<   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103  
104   105   106   107   108   109   110   111   112   113   >>  
parallel to the perspective plane, find its centre _O'_ by means of diagonals, and _O'_ will be the central height of the pyramid and exactly over the centre of the base. From this point _O'_ draw sloping lines _O'f_, _O'e_, _O'Y_, &c., and the figure is complete. Note the way in which we find the measurements on base of pyramid and on line _MN_. By drawing _AS_ and _BS_ to point of sight we find _Te_, which measures 100 feet at a distance of 1,600 feet. We mark off seven of these lengths, and an additional 64 feet by the scale, and so obtain the required length. The position of the third corner of the base is found by dropping a perpendicular from _K_, till it meets the line _eS_. Another thing to note is that the side of the pyramid that faces us, although an equilateral triangle, does not appear so, as its top angle is 382 feet farther off than its base owing to its leaning position. CXXIII THE PYRAMID IN ANGULAR PERSPECTIVE In order to show the working of this proposition I have taken a much higher horizon, which immediately detracts from the impression of the bigness of the pyramid. [Illustration: Fig. 225.] We proceed to make our ground-plan _abcd_ high above the horizon instead of below it, drawing first the parallel square and then the oblique one. From all the principal points drop perpendiculars to the ground and thus find the points through which to draw the base of the pyramid. Find centres _OO'_ and decide upon the height _OP_. Draw the sloping lines from _P_ to the corners of the base, and the figure is complete. CXXIV TO DIVIDE THE SIDES OF THE PYRAMID HORIZONTALLY Having raised the pyramid on a given oblique square, divide the vertical line OP into the required number of parts. From _A_ through _C_ draw _AG_ to horizon, which gives us _G_, the vanishing point of all the diagonals of squares parallel to and at the same angle as _ABCD_. From _G_ draw lines through the divisions 2, 3, &c., on _OP_ cutting the lines _PA_ and _PC_, thus dividing them into the required parts. Through the points thus found draw from _V_ all those sides of the squares that have _V_ for their vanishing point, as _ab_, _cd_, &c. Then join _bd_, _ac_, and the rest, and thus make the horizontal divisions required. [Illustration: Fig. 226.] [Illustration: Fig. 227.] The same method will apply to drawing steps, square blocks, &c., as shown in Fig. 227, which is at the same angle as th
PREV.   NEXT  
|<   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103  
104   105   106   107   108   109   110   111   112   113   >>  



Top keywords:

pyramid

 

required

 
horizon
 

points

 

square

 

drawing

 
parallel
 
Illustration
 

squares

 
diagonals

PYRAMID

 
divisions
 

position

 

vanishing

 

centre

 

ground

 

sloping

 
figure
 

oblique

 
height

complete

 

corners

 

DIVIDE

 

centres

 

perpendiculars

 

decide

 

principal

 

blocks

 

horizontal

 
method

Through
 

number

 

vertical

 

divide

 

Having

 
raised
 

dividing

 

cutting

 
HORIZONTALLY
 
leaning

lengths

 

distance

 

additional

 

dropping

 

perpendicular

 

corner

 

obtain

 

length

 

measures

 

central