FREE BOOKS

Author's List




PREV.   NEXT  
|<   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94  
95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   >>   >|  
reactions, and are not homogeneous. They yield on boiling with condensing acids from 6 to 9 p.ct. furfural. It is usual to regard furfural as invariably produced from a pentose residue. But this interpretation ignores a number of other probable sources of the aldehyde. It must be particularly remembered that laevulose is readily condensed (a) to a methylhydroxyfurfural C_{6}H_{1}O_{6} - 3H_{2}O = C_{6}H_{6}O_{3} = C_{5}(OH).H_{2}.(CH_{3})O_{2} and (b) by HBr, with further loss of OH, as under: C_{6}H_{12}O_{6} - 4H_{2}O + HBr = C_{5}H_{3}(CH_{2}Br)O and generally the ketoses are distinguished from the aldoses by their susceptibility to condensation. Such condensation of laevulose has been effected by two methods: (a) by heating the concentrated aqueous solution with a small proportion of oxalic acid at 3 atm. pressure [Kiermayer, Chem. Ztg. 19, 100]; (b) by the action of hydrobromic acid (gas) in presence of anhydrous ether; the actual compound obtained being the omega-brommethyl derivative [Fenton, J. Chem. Soc. 1899, 423]. This latter method is being extended to the investigation of typical celluloses, and the results appear to confirm the view that cellulose may be of ketonic constitution. The evidence which is obtainable from the synthetical side of the question rests of course mainly upon the physiological basis. There are two points which may be noted. Since the researches of Brown and Morris (J. Chem. Soc. 1893, 604) have altered our views of the relationships of starch and cane sugar to the assimilation process, and have placed the latter in the position of a primary product with starch as a species of overflow and reserve product, it appears that laevulose must play an important part in the elaboration of cellulose. Moreover, A. J. Brown, in studying the cellulosic cell-collecting envelope produced by the _Bacterium xylinum_, found that the proportion of this product to the carbohydrate disappearing under the action of the ferment was highest in the case of laevulose. These facts being also taken into consideration there is a concurrence of suggestion that the typical CO group in the celluloses is of ketonic character. That the typical cotton cellulose breaks down finally under the action of sulphuric acid to dextrose cannot be held to prove the aldehydic position of the carbonyls in the unit groups of the actual cellulose molecule or aggregate. We again are confronted with the problem of the aggr
PREV.   NEXT  
|<   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94  
95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   >>   >|  



Top keywords:

laevulose

 

cellulose

 

product

 

typical

 

action

 

furfural

 
celluloses
 

condensation

 

proportion

 

actual


position

 

starch

 
ketonic
 

produced

 

overflow

 

reserve

 

primary

 
species
 
reactions
 

elaboration


Moreover

 
physiological
 

important

 
appears
 
assimilation
 

altered

 

studying

 

points

 
researches
 

Morris


process

 

relationships

 

dextrose

 

sulphuric

 

finally

 

cotton

 

breaks

 

aldehydic

 

carbonyls

 
confronted

problem

 
aggregate
 

groups

 

molecule

 
character
 

carbohydrate

 

disappearing

 

ferment

 
xylinum
 

collecting