FREE BOOKS

Author's List




PREV.   NEXT  
|<   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76  
77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   >>   >|  
[oo] T = [pi][sigma]^2 | z[psi](z)dz. (35) _/0 In Laplace's notation the second member of (34), multiplied by 2[pi], is represented by H. As Laplace has shown, the values for K and T may also be expressed in terms of the function [phi], with which we started. Integrating by parts, we get _ _ / / | [psi](z)dz = z[psi](z) + (1/3)z^3[PI](z) + 1/3 | z^3[phi](z)dz, _/ _/ _ _ / / | z[psi](z)dz = 1/2z^2[psi](z) + (1/8)z^4[PI](z) + 1/8 | z^4 [phi](z)dz. _/ _/ In all cases to which it is necessary to have regard the integrated terms vanish at both limits, and we may write _ _ _ _ / [oo] 1 / [oo] / [oo] 1 / [oo] | [psi](z)dz = -- | z^3 [phi](z)dz, | z[psi](z)dz = -- | z^4 [phi](z)dz; (36) _/0 3 _/0 _/0 8 _/0 so that _ _ 2[pi] / [oo] [pi] / [oo] K0 = ----- | z^3[phi](z)dz, T0 = ---- | z^4 [phi](z)dz. (37) 3 _/0 8 _/0 A few examples of these formulae will promote an intelligent comprehension of the subject. One of the simplest suppositions open to us is that [phi](f) = e^([beta] f). (38) From this we obtain [Pi](z) = [beta]^(-1) e^([beta] z), [psi](z) = [beta]^(-3)([beta]z + 1) e^(-[beta] z), (39) K0 = 4[pi][beta]^(-4), T0 = 3[pi][beta]^(-5). (40) The range of the attractive force is mathematically infinite, but practically of the order [beta]^(-1), and we see that T is of higher order in this small quantity than K. That K is in all cases of the fourth order and T of the fifth order in the range of the forces is obvious from (37) without integration. An apparently simple example would be to suppose [phi](z) = z^n. We get z^(n+1) z^(n+3) [PI](z) = - -------, [psi](z) = ---------, n+1 n+3 . n+1 2[pi]z^(n+4) |[oo] K0 =
PREV.   NEXT  
|<   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76  
77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   >>   >|  



Top keywords:

Laplace

 

suppositions

 

simplest

 
attractive
 
obtain
 

mathematically

 

integration


apparently
 

simple

 

suppose

 

obvious

 

forces

 

higher

 
practically

quantity

 

fourth

 

infinite

 
values
 

expressed

 
function
 

Integrating


started
 

notation

 

member

 
represented
 

multiplied

 

examples

 

formulae


comprehension

 

intelligent

 

promote

 

integrated

 

regard

 

vanish

 
limits

subject