FREE BOOKS

Author's List




PREV.   NEXT  
|<   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115  
116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   >>   >|  
the film will move from the axis. Hence if a film in the form of the catenoid which is nearest the axis is ever so slightly displaced from the axis it will move farther from the axis till it reaches the other catenoid. If the mean curvature is concave towards the axis the film will tend to approach the axis. Hence if a film in the form of the catenoid which is nearest the axis be displaced towards the axis, it will tend to move farther towards the axis and will collapse. Hence the film in the form of the catenoid which is nearest the axis is in unstable equilibrium under the condition that it is exposed to equal pressures within and without. If, however, the circular ends of the catenoid are closed with solid disks, so that the volume of air contained between these disks and the film is determinate, the film will be in stable equilibrium however large a portion of the catenary it may consist of. The criterion as to whether any given catenoid is stable or not may be obtained as follows:-- [Illustration: FIG. 14.] Let PABQ and ApqB (fig. 14) be two catenaries having the same directrix and intersecting in A and B. Draw Pp and Qq touching both catenaries, Pp and Qq will intersect at T, a point in the directrix; for since any catenary with its directrix is a similar figure to any other catenary with its directrix, if the directrix of the one coincides with that of the other the centre of similitude must lie on the common directrix. Also, since the curves at P and p are equally inclined to the directrix, P and p are corresponding points and the line Pp must pass through the centre of similitude. Similarly Qq must pass through the centre of similitude. Hence T, the point of intersection of Pp and Qq, must be the centre of similitude and must be on the common directrix. Hence the tangents at A and B to the upper catenary must intersect above the directrix, and the tangents at A and B to the lower catenary must intersect below the directrix. The condition of stability of a catenoid is therefore that the tangents at the extremities of its generating catenary must intersect before they reach the directrix. _Stability of a Plane Surface._--We shall next consider the limiting conditions of stability of the horizontal surface which separates a heavier fluid above from a lighter fluid below. Thus, in an experiment of F. Duprez ("Sur un cas particulier de l'equilibre des liquides," _Nouveaux Mem. del' Acad. de Belgique, 1851
PREV.   NEXT  
|<   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115  
116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   >>   >|  



Top keywords:
directrix
 

catenoid

 

catenary

 

centre

 

similitude

 
intersect
 

tangents

 

nearest

 

stability

 

catenaries


stable

 

equilibrium

 

displaced

 

common

 
farther
 

condition

 

equally

 
extremities
 
intersection
 

Similarly


generating
 

inclined

 
points
 

heavier

 

particulier

 

Duprez

 

equilibre

 

Belgique

 

liquides

 

Nouveaux


experiment

 
Surface
 
Stability
 

separates

 

lighter

 

surface

 

horizontal

 

limiting

 

conditions

 

closed


circular

 

volume

 

determinate

 

contained

 
pressures
 

reaches

 

slightly

 
curvature
 
concave
 

exposed