FREE BOOKS

Author's List




PREV.   NEXT  
|<   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63  
64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   >>   >|  
ed to the grid-filament or C-circuit. The characteristic relation which we are after is one between grid voltage, that is _E_{C}_, and plate current, that is _I_{B}_. So we call it the _E_{C}_--_I_{B}_ characteristic. The dash between the letters is not a subtraction sign but merely a dash to separate the letters. Now we'll find the "ee-see-eye-bee" characteristic. Connect some small dry cells in series for use in the grid circuit. Then connect the filament to the middle cell as in Fig. 19. Take the wire which comes from the grid and put a battery clip on it, then you can connect the grid anywhere you want along this series of batteries. See Fig. 18. In the figure this movable clip is represented by an arrow head. You can see that if it is at _a_ the battery will make the grid positive. If it is moved to _b_ the grid will be more positive. On the other hand if the clip is at _o_ there will be no e. m. f. applied to the grid. If it is at _c_ the grid will be made negative. Between grid and filament there is placed a voltmeter which will tell how much e. m. f. is applied to the grid, that is, tell the value of _E_{C}_, for any position whatever of the clip. We shall start with the filament heated to a deep red. The manufacturers of the audion tell the purchaser what current should flow through the filament so that there will be the proper emission of electrons. There are easy ways of finding out for one's self but we shall not stop to describe them. The makers also tell how many volts to apply to the plate, that is what value _E_{B}_ should have. We could find this out also for ourselves but we shall not stop to do so. [Illustration: Fig 19] Now we set the battery clip so that there is no voltage applied to the grid; that is, we start with _E_{C}_ equal to zero. Then we read the ammeter in the plate circuit to find the value of _I_{B}_ which corresponds to this condition of the grid. Next we move the clip so as to make the grid as positive as one battery will make it, that is we move the clip to _a_ in Fig. 19. We now have a different value of _E_{C}_ and will find a different value of _I_{B}_ when we read the ammeter. Next move the clip to apply two batteries to the grid. We get a new pair of values for _E_{C}_ and _I_{B}_, getting _E_{C}_ from the voltmeter and _I_{B}_ from the ammeter. As we continue in this way, increasing _E_{C}_, we find that the current _I_{B}_ increases for a while and then after
PREV.   NEXT  
|<   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63  
64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   >>   >|  



Top keywords:

filament

 

battery

 

positive

 
ammeter
 

applied

 
circuit
 

characteristic

 

current


voltage
 
batteries
 

voltmeter

 

series

 
letters
 
connect
 
proper
 

emission


electrons

 

audion

 

purchaser

 
increases
 

manufacturers

 
increasing
 

values

 

continue


finding

 

Illustration

 
corresponds
 
makers
 

condition

 

describe

 

negative

 

subtraction


Connect

 

middle

 

separate

 

figure

 

movable

 
Between
 

relation

 

heated


position
 

represented