FREE BOOKS

Author's List




PREV.   NEXT  
|<   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111  
112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   >>   >|  
that it does not cut out some of the high notes which are necessary to give the sound its naturalness. You will also have to make sure that your apparatus does not distort, that is, does not receive and reproduce some notes or "voice frequencies" more efficiently than it does some others which are equally necessary. For that reason when you buy a transformer or a telephone receiver it is well to ask for a characteristic curve of the apparatus which will show how the action varies as the frequency of the current is varied. The action or response should, of course, be practically the same at all the frequencies within the necessary part of the voice range. [Footnote 7: Cf. Chap. VI of "The Realities of Modern Science."] [Footnote 8: My thanks are due to Professor D. C. Miller and to the Macmillan Company for permission to reproduce Figs. 79 to 83 inclusive from that interesting book, "The Science of Musical Sounds."] LETTER 17 GRID BATTERIES AND GRID CONDENSERS FOR DETECTORS DEAR SON: You remember the audion characteristics which I used in Figs. 55, 56 and 57 of Letter 14 to show you how an incoming signal will affect the current in the plate circuit. Look again at these figures and you will see that these characteristics all had the same general shape but that they differed in their positions with reference to the "main streets" of "zero volts" on the grid and "zero mil-amperes" in the plate circuit. Changing the voltage of the B-battery in the plate circuit changed the position of the characteristic. We might say that changing the B-battery shifted the curve with reference to the axis of zero volts on the grid. [Illustration: Fig 56] [Illustration: Fig 63] In the case of the three characteristics which we are discussing the shift was made by changing the B-battery. Increasing B-voltage shifts characteristic to the left. It is possible, however, to produce such a shift by using a C-battery, that is, a battery in the grid circuit, which makes the grid permanently negative (or positive, depending upon how it is connected). This battery either helps or hinders the plate battery, and because of the strategic position of the grid right near the filament one volt applied to the grid produces as large an effect as would several volts in the plate battery. Usually, therefore, we arrange to shift the characteristic by using a C-battery. [Illustration: Fig 85] Suppose for example that we had an audi
PREV.   NEXT  
|<   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111  
112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   >>   >|  



Top keywords:

battery

 

characteristic

 
circuit
 

Illustration

 

characteristics

 

current

 
action
 
voltage
 

reference

 
Science

changing

 
position
 

Footnote

 

reproduce

 

apparatus

 

frequencies

 

effect

 
streets
 

produces

 
changed

applied

 

permanently

 

amperes

 

Changing

 

Usually

 

Suppose

 

general

 

negative

 

figures

 
positions

arrange
 

differed

 

positive

 

shifts

 

Increasing

 
hinders
 

produce

 

connected

 
discussing
 
shifted

depending

 

filament

 

strategic

 

varies

 

frequency

 

receiver

 

telephone

 

transformer

 

varied

 

response