FREE BOOKS

Author's List




PREV.   NEXT  
|<   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82  
83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   >>   >|  
ng-rooms large or put them close together. If we make the plates of a condenser larger, keeping the separation between them the same, it means more space in the waiting-rooms and hence less crowding. You know that the more crowded the electrons become the more they push back against any other electron which some battery is trying to force into their waiting-room, that is the higher the e. m. f. of the condenser. The other way to get a larger capacity is to bring the plates closer together, that is to shorten the gap. Look at it this way: The closer the plates are together the nearer home the electrons are. Their home is only just across a little gap; they can almost see the electronic games going on around the nuclei they left. They forget the long round-about journey they took to get to this new waiting-room and they crowd over to one side of this room to get just as close as they can to their old homes. That's why it's always easier, and takes less voltage, to get the same number of electrons moved from one plate to the other of a condenser which has only a small space between plates. It takes less voltage and that means that the condenser has a smaller e. m. f. for the same number of electrons. It also means that before the e. m. f. rises to one volt we can get more electrons moved around if the plates are close together. And that means larger capacity. There is one thing to remember in all this: It doesn't make any difference how thick the plates are. It all depends upon how much surface they have and how close together they are. Most of the electrons in the plate which is being made negative are way over on the side toward their old homes, that is, toward the plate which is being made positive. And most of the homes, that is, atoms which have lost electrons, are on the side of the positive plate which is next to the gap. That's why I said the electrons could almost see their old homes. [Illustration: Fig 41] All this leads to two very simple rules for building condensers. If you have a condenser with too small a capacity and want one, say, twice as large, you can either use twice as large plates or bring the plates you already have twice as close together; that is, make the gap half as large. Generally, of course, the gap is pretty well fixed. For example, if we make a condenser by using two pieces of metal and separating them by a sheet of mica we don't want the job of splitting the mica. So we increase
PREV.   NEXT  
|<   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82  
83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   >>   >|  



Top keywords:

electrons

 

plates

 
condenser
 

capacity

 

waiting

 

larger

 

positive

 

voltage


number

 

closer

 

splitting

 
surface
 
negative
 

pieces

 
pretty
 
separating

Generally

 

simple

 

building

 

condensers

 

increase

 

Illustration

 

higher

 

battery


shorten

 

nearer

 

electron

 

separation

 

keeping

 
crowding
 

crowded

 

electronic


smaller
 

difference

 

remember

 
easier
 

forget

 
nuclei
 

journey

 
depends