FREE BOOKS

Author's List




PREV.   NEXT  
|<   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96  
97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   >>   >|  
undred cycles a second would give you the impression of a musical note. As the frequency is made still larger you have merely the impression of a higher-pitched note until we get up into the thousands of cycles a second. Then, perhaps about twenty-thousand cycles a second, you find you hear only a little sound like wind or like steam escaping slowly from a jet or through a leak. A few thousand cycles more each second and you don't hear anything at all. You know that for radio-transmitting stations we use audion oscillators which are producing alternating currents with frequencies of several hundred-thousand cycles per second. It certainly wouldn't do any good to connect a telephone receiver in the antenna circuit at the receiving station as in Fig. 60. We couldn't hear so high pitched a note. [Illustration: Fig 60] Even if we could, there are several reasons why the telephone receiver wouldn't work at such high frequencies. The first is that the diaphragm can't be moved so fast. It has some inertia, you know, that is, some unwillingness to get started. If you try to start it in one direction and, before you really get it going, change your mind and try to make it go in the other direction, it simply isn't going to go at all. So even if there is an alternating current in the coil around the magnet there will not be any corresponding vibration of the diaphragm if the frequency is very high, certainly not if it is above about 20,000 cycles a second. The other reason is that there will only be a very feeble current in the coil anyway, no matter what you do, if the frequency is high. You remember that the electrons in a coil are sort of banded together and each has an effect on all the others which can move in parallel paths. The result is that they have a great unwillingness to get started and an equal unwillingness to stop. Their unwillingness is much more than if the wire was long and straight. It is also made very much greater by the presence of the iron core. An alternating e. m. f. of high frequency hardly gets the electrons started at all before it's time to get them going in the opposite direction. There is very little movement to the electrons and hence only a very small current in the coil if the frequency is high. If you want a rule for it you can remember that the higher the frequency of an alternating e. m. f. the smaller the electron stream which it can set oscillating in a given coil. Of course, we m
PREV.   NEXT  
|<   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96  
97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   >>   >|  



Top keywords:
cycles
 

frequency

 

unwillingness

 
alternating
 

started

 

direction

 

electrons

 

current

 
thousand
 
wouldn

frequencies

 

diaphragm

 

remember

 

telephone

 

receiver

 

impression

 

pitched

 

higher

 

banded

 
undred

effect
 

magnet

 
feeble
 

matter

 

vibration

 

reason

 

movement

 
opposite
 
oscillating
 

smaller


electron
 

stream

 

result

 

presence

 

greater

 

straight

 

parallel

 

inertia

 

transmitting

 

stations


audion

 

hundred

 

currents

 
oscillators
 

producing

 

twenty

 

thousands

 

escaping

 

slowly

 

larger