FREE BOOKS

Author's List




PREV.   NEXT  
|<   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69  
70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   >>   >|  
f a charged condenser, as in Fig. 27, then something of great interest happens. To understand you must know something more about electron streams. Suppose we should wind a few turns of wire on a cylindrical core, say on a stiff cardboard tube. We shall use insulated wire. Now start from one end of the coil, say _a_, and follow along the coiled wire for a few turns and then scratch off the insulation and solder onto the coil two wires, _b_, and _c_, as shown in Fig. 28. The further end of the coil we shall call _d_. Now let's arrange a battery and switch so that we can send a current through the part of the coil between _a_ and _b_. Arrange also a current-measuring instrument so as to show if any current is flowing in the part of the coil between _c_ and _d_. For this purpose we shall use a kind of current-measuring instrument which I have not yet explained. It is different from the hot-wire type described in Letter 7 for it will show in which direction electrons are streaming through it. The diagram of Fig. 28 indicates the apparatus of our experiment. When we close the switch, _S_, the battery starts a stream of electrons from _a_ towards _b_. Just at that instant the needle, or pointer, of the current instrument moves. The needle moves, and thus shows a current in the coil _cd_; but it comes right back again, showing that the current is only momentary. Let's say this again in different words. The battery keeps steadily forcing electrons through the circuit _ab_ but the instrument in the circuit _cd_ shows no current in that circuit except just at the instant when current starts to flow in the neighboring circuit _ab_. [Illustration: Fig 28] One thing this current-measuring instrument tells us is the direction of the electron stream through itself. It shows that the momentary stream of electrons goes through the coil from _d_ to _c_, that is in the opposite direction to the stream in the part _ab_. Now prepare to do a little close thinking. Read over carefully all I have told you about this experiment. You see that the moment the battery starts a stream of electrons from _a_ towards _b_, something causes a momentary, that is a temporary, movement of electrons from _d_ to _c_. We say that starting a stream of electrons from _a_ to _b_ sets up or "induces" a stream of electrons from _d_ to _c_. What will happen then if we connect the battery between _a_ and _d_ as in Fig. 29? Electrons will start streaming a
PREV.   NEXT  
|<   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69  
70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   >>   >|  



Top keywords:

current

 

electrons

 

stream

 
instrument
 

battery

 
circuit
 

direction

 

measuring

 
momentary
 
starts

switch

 

experiment

 
needle
 
instant
 
streaming
 

electron

 

forcing

 

pointer

 

showing

 
steadily

Illustration

 
temporary
 

movement

 

moment

 

starting

 

connect

 
Electrons
 
happen
 

induces

 

carefully


neighboring

 

thinking

 

prepare

 

opposite

 

Letter

 

solder

 

insulation

 
arrange
 

understand

 

scratch


coiled
 

streams

 
cylindrical
 
Suppose
 
cardboard
 

follow

 

insulated

 
interest
 
condenser
 

diagram