FREE BOOKS

Author's List




PREV.   NEXT  
|<   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127  
128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   >>  
alf way up. You pull twice as hard but only half as far and you do the same amount of work as before. [Illustration: Fig 98] We can't get more work out of the secondary of a transformer than we do in the primary. If we design the transformer so that there is a greater pull (e. m. f.) in the secondary the electron stream in the secondary will be correspondingly smaller. You remember how we measure resistance. We divide the e. m. f. (number of volts) by the current (number of amperes) to find the resistance (number of ohms). Suppose we do that for the primary and for the secondary of the transformer of Fig. 98 which we are discussing. See what happens in the secondary. There is only half as much voltage but twice as much current. It looks as though the secondary had one-fourth as much resistance as the primary. And so it has, but we usually call it "impedance" instead of resistance because straight wires resist but coils or condensers impede alternating e. m. f.'s. [Illustration: Fig 99] Before we return to the question of using a transformer in an audion circuit let us turn this transformer around as in Fig. 99 and send the current through the side with the larger number of windings. Let's talk of "primary" and "secondary" just as before but, of course, remember that now the primary has twice the turns of the secondary. On the secondary side we shall have only half the current, but there will be twice the e. m. f. The resistance of the secondary then is four times that of the primary. Now return to the amplifier of Fig. 94 and see what sort of a transformer should be between the plate circuit of the tube and the telephone receivers. Suppose the internal resistance of the tube is 12,000 ohms and the resistance of the telephones is 3,000 ohms. Suppose also that the resistance (really impedance) of the primary side of the transformer which we just considered is 12,000 ohms. The impedance of its secondary will be a quarter of this or 3,000 ohms. If we connect such a transformer in the circuit, as shown, we shall obtain the greatest output from the tube. In the first place the primary of the transformer has a number of ohms just equal to the internal resistance of the tube. The tube, therefore, will give its best to that transformer. In the second place the secondary of the transformer has a resistance just equal to the telephone receivers so it can give its best to them. The effect of the transformer is to ma
PREV.   NEXT  
|<   103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127  
128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   >>  



Top keywords:

transformer

 

secondary

 

resistance

 

primary

 

number

 

current

 

circuit

 

Suppose

 

impedance


return

 

receivers

 

telephone

 

internal

 
Illustration
 

remember

 

amplifier

 
windings
 
larger

greatest

 

output

 

obtain

 

effect

 
connect
 

quarter

 

considered

 

telephones

 

question


amount

 

amperes

 

discussing

 

voltage

 

divide

 

measure

 

greater

 

design

 

smaller


correspondingly

 

stream

 

electron

 

alternating

 

Before

 

impede

 

condensers

 
audion
 

resist


fourth

 

straight