FREE BOOKS

Author's List




PREV.   NEXT  
|<   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116  
117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   >>   >|  
eech. For example, if notes of about 2000 cycles a second are involved in the speech which is being transmitted, the leak across the condenser will not work fast enough. On the other hand, for the very lowest notes in the voice the leak will work too fast and such variations in the signal current will not be detected as efficiently as are those of 1000 cycles a second. You can see that there is always a little favoritism on the part of the grid-condenser detector. It doesn't exactly reproduce the variations in intensity of the radio signal which were made at the sending station. It distorts a little. As amateurs we usually forgive it that distortion because it is so efficient. It makes so large a change in the current through the telephone when it receives a signal that we can use it to receive much weaker signals, that is, signals from smaller or more distant sending stations, than we can receive with the arrangement described in Letter 14. LETTER 18 AMPLIFIERS AND THE REGENERATIVE CIRCUIT MY DEAR RECEIVER: There is one way of making an audion even more efficient as a detector than the method described in the last letter. And that is to make it talk to itself. Suppose we arrange a receiving circuit as in Fig. 92. It is exactly like that of Fig. 90 of the previous letter except for the fact that the current in the plate circuit passes through a little coil, _L_{t}_, which is placed near the coil _L_ and so can induce in it an e. m. f. which will correspond in intensity and wave form to the current in the plate circuit. If we should take out the grid condenser and its leak this circuit would be like that of Fig. 54 in Letter 13 which we used for a generator of high-frequency alternating currents. You remember how that circuit operates. A small effect in the grid circuit produces a large effect in the plate circuit. Because the plate circuit is coupled to the grid circuit the grid is again affected and so there is a still larger effect in the plate circuit. And so on, until the current in the plate circuit is swinging from zero to its maximum possible value. What happens depends upon how closely the coils _L_ and _L_{t}_ are coupled, that is, upon how much the changing current in one can affect the other. If they are turned at right angles to each other, so that there is no possible mutual effect we say there is "zero coupling." Start with the coils at right angles to each other and turn _L_{
PREV.   NEXT  
|<   92   93   94   95   96   97   98   99   100   101   102   103   104   105   106   107   108   109   110   111   112   113   114   115   116  
117   118   119   120   121   122   123   124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   >>   >|  



Top keywords:

circuit

 

current

 
effect
 

signal

 

condenser

 

coupled

 
sending
 
angles
 

efficient

 
intensity

letter

 
Letter
 

signals

 

receive

 

variations

 

cycles

 

detector

 
speech
 

generator

 
involved

operates

 

remember

 

currents

 

frequency

 

alternating

 

induce

 

transmitted

 

passes

 

correspond

 
produces

turned
 

affect

 

changing

 

closely

 

coupling

 
mutual
 

depends

 

affected

 
Because
 
larger

maximum

 

swinging

 

station

 

smaller

 

detected

 

weaker

 

efficiently

 

distant

 

stations

 

arrangement