FREE BOOKS

Author's List




PREV.   NEXT  
|<   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26  
27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   >>   >|  
volume is the result. We present it to the trade and students of horology happy in the knowledge that its contents have already received their approval. An interesting addition to the book is the illustrated story of the escapements, from the first crude conceptions to their present perfection. CONTENTS CHAPTER I. THE DETACHED LEVER ESCAPEMENT 9 CHAPTER II. THE CYLINDER ESCAPEMENT 111 CHAPTER III. THE CHRONOMETER ESCAPEMENT 131 CHAPTER IV. HISTORY OF ESCAPEMENTS 153 CHAPTER V. PUTTING IN A NEW CYLINDER 169 INDEX 177 WATCH AND CLOCK ESCAPEMENTS CHAPTER I. THE DETACHED LEVER ESCAPEMENT. In this treatise we do not propose to go into the history of this escapement and give a long dissertation on its origin and evolution, but shall confine ourselves strictly to the designing and construction as employed in our best watches. By designing, we mean giving full instructions for drawing an escapement of this kind to the best proportions. The workman will need but few drawing instruments, and a drawing-board about 15" by 18" will be quite large enough. The necessary drawing-instruments are a T-square with 15" blade; a scale of inches divided into decimal parts; two pairs dividers with pen and pencil points--one pair of these dividers to be 5" and the other 6"; one ruling pen. Other instruments can be added as the workman finds he needs them. Those enumerated above, however, will be all that are absolutely necessary. [Illustration: Fig. 1] We shall, in addition, need an arc of degrees, which we can best make for ourselves. To construct one, we procure a piece of No. 24 brass, about 51/2" long by 11/4" wide. We show such a piece of brass at _A_, Fig. 1. On this piece of brass we sweep two arcs with a pair of dividers set at precisely 5", as shown (reduced) at _a a_ and _b b_. On these arcs we set off the space held in our dividers--that is 5"--as shown at the short radial lines at each end of the two arcs. Now it is a well-known fact that the space embraced by our dividers contains exactly sixty degrees of the arcs _a a_ and _b b_, or one-sixth of the entire circle; consequently, we divide the arcs _a a_ and _b b_ into sixty equal parts, to represent degrees, and at one end of these arcs we halve five spaces so we can get at half degrees. [Illustration: Fig. 2]
PREV.   NEXT  
|<   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26  
27   28   29   30   31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   >>   >|  



Top keywords:
CHAPTER
 

dividers

 

drawing

 

degrees

 

ESCAPEMENT

 
instruments
 

escapement

 
designing
 

Illustration

 

workman


DETACHED

 

CYLINDER

 

ESCAPEMENTS

 

present

 

addition

 

contents

 
construct
 

procure

 

knowledge

 

enumerated


received

 
approval
 
absolutely
 

horology

 

students

 

entire

 

circle

 
volume
 

divide

 
spaces

represent

 
embraced
 

reduced

 
precisely
 

radial

 

result

 

giving

 

watches

 

HISTORY

 
instructions

proportions

 

CHRONOMETER

 

employed

 

dissertation

 

history

 

origin

 

evolution

 

strictly

 
propose
 
construction