FREE BOOKS

Author's List




PREV.   NEXT  
|<   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30  
31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   >>   >|  
ne of the teeth of the escape wheel resting on the pallet at the point _f_; and the escape wheel turning in the direction of the arrow _j_. If we imagine a tooth as indicated at the dotted outline at _D_, Fig. 6, pressing against a surface which coincides with the radial line _p f_, the action would be in the direction of the line _f h_ and at right angles to _p f_. If we reason on the action of the tooth _D_, as it presses against a pallet placed at _f_, we see the action is neutral. [Illustration: Fig. 6] ESTABLISHING THE CENTER OF PALLET STAFF. [Illustration: Fig. 7] With a fifteen-tooth escape wheel each tooth occupies twenty-four degrees, and from the point _f_ to _e_ would be two and one-half tooth-spaces. We show the dotted points of four teeth at _D D' D''D'''_. To establish the center of the pallet staff we draw a line at right angles to the line _p e'_ from the point _e_ so it intersects the line _f h_ at _k_. For drawing a line at right angles to another line, as we have just done, a hard-rubber triangle, shaped as shown at _C_, Fig. 7, can be employed. To use such a triangle, we place it so the right, or ninety-degrees angle, rests at _e_, as shown at the dotted triangle _C_, Fig. 6, and the long side coincides with the radial line _p e'_. If the short side of the hard-rubber triangle is too short, as indicated, we place a short ruler so it rests against the edge, as shown at the dotted line _g e_, Fig. 7, and while holding it securely down on the drawing we remove the triangle, and with a fine-pointed pencil draw the line _e g_, Fig. 6, by the short rule. Let us imagine a flat surface placed at _e_ so its face was at right angles to the line _g e_, which would arrest the tooth _D''_ after the tooth _D_ resting on _f_ had been released and passed through an arc of twelve degrees. A tooth resting on a flat surface, as imagined above, would also rest dead. As stated previously, the pallets we are considering have equidistant locking faces and correspond to the arc _l l_, Fig. 6. In order to realize any power from our escape-wheel tooth, we must provide an impulse face to the pallets faced at _f e_; and the problem before us is to delineate these pallets so that the lever will be propelled through an arc of eight and one-half degrees, while the escape wheel is moving through an arc of ten and one-half degrees. We make the arc of fork action eight and one-half degrees for two reasons--(1) because mo
PREV.   NEXT  
|<   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27   28   29   30  
31   32   33   34   35   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   >>   >|  



Top keywords:

degrees

 
triangle
 

escape

 
action
 

angles

 

dotted

 

resting

 

pallets

 

pallet

 

surface


drawing

 

rubber

 
coincides
 

radial

 

imagine

 

direction

 
Illustration
 

stated

 
previously
 

released


passed
 

arrest

 

twelve

 

imagined

 

problem

 

propelled

 

moving

 

reasons

 

delineate

 

correspond


equidistant

 

locking

 

realize

 
impulse
 
provide
 

occupies

 

fifteen

 
PALLET
 

twenty

 

spaces


center

 

establish

 

points

 

CENTER

 

outline

 
turning
 

pressing

 
reason
 

ESTABLISHING

 

neutral