FREE BOOKS

Author's List




PREV.   NEXT  
|<   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70  
71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   >>   >|  
jewel pin will pass through an arc of thirty degrees, as shown on the arcs _a_ and _f_. Now here is an excellent opportunity to impress on our minds the true value of angular motion, inasmuch as thirty degrees on the arc _f_ is of more than twice the linear extent as on the arc _a_. Before we commence to draw the horn of the fork engaging the jewel pin _D_, shown at full line in Fig. 57, we will come to perfectly understand what mechanical relations are required. As previously stated, we assume the jewel pin, as shown at _D_, Fig. 57, is in the act of encountering the inner face of the horn of the fork for the end or purpose of unlocking the engaged pallet. Now if the inner face of the horn of the fork was on a radial line, such radial line would be _p B_, Fig. 57. We repeat this line at _p_, Fig. 56, where the parts are drawn on a larger scale. To delineate a fork at the instant the last effort of impulse has been imparted to the jewel pin, and said jewel pin is in the act of separating from the inner face of the prong of the fork--we would also call attention to the fact that relations of parts are precisely the same as if the jewel pin had just returned from an excursion of vibration and was in the act of encountering the inner face of the prong of the fork in the act of unlocking the escapement. We mentioned this matter previously, but venture on the repetition to make everything clear and easily understood. We commence by drawing the line _A B_ and dividing it in four equal parts, as on previous occasions, and from _A_ and _B_ as centers draw the pitch circles _c d_. By methods previously described, we draw the lines _A a_ and _A a'_, also _B b_ and _B b'_ to represent the angular motion of the two mobiles, viz., fork and roller action. As already shown, the roller occupies twelve degrees of angular extent. To get at this conveniently, we lay off on the arc by which we located the lines _A a_ and _A a'_ six degrees above the line _A a_ and draw the line _A h_. Now the angular extent on the arc _c_ between the lines _A a_ and _A h_ represents the radius of the circle defining the jewel pin. From the intersection of the line _A a_ with the arc _c_ as a center, and with the radius just named, we sweep the small circle _D_, Fig. 58, which represents our jewel pin; we afterward cut away two-fifths and draw the full line _D_, as shown. We show at Fig. 59 a portion of Fig. 58, enlarged four times, to show certain
PREV.   NEXT  
|<   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70  
71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   >>   >|  



Top keywords:

angular

 

degrees

 

extent

 
previously
 

encountering

 

unlocking

 
roller
 

radial

 

commence

 
thirty

motion

 

radius

 

circle

 

relations

 
represents
 
enlarged
 
portion
 

circles

 

methods

 

centers


dividing

 

understood

 
easily
 

drawing

 

occasions

 

previous

 

intersection

 

conveniently

 
center
 

located


defining

 

twelve

 

mobiles

 

represent

 

afterward

 

action

 

occupies

 

fifths

 

delineate

 
mechanical

required

 
understand
 

perfectly

 

engaging

 

stated

 

assume

 

engaged

 

pallet

 
purpose
 

Before