FREE BOOKS

Author's List




PREV.   NEXT  
|<   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60  
61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   >>   >|  
ss is rinsed in pure water to remove the acid, and dried by patting with an old soft towel, and further dried by waving through the air. A little turpentine on a rag will remove the mastic, but turpentine will not touch the shellac coating. The surface of the brass will be found irregularly acted upon, producing a sort of mottled look. To obtain a nice frosting the process of applying the mastic and etching must be repeated three or four times, when a beautiful coarse-grain mat or frosting will be produced. The shellac protection will not need much patching up during the three or four bitings of acid, as the turpentine used to wash off the mastic does not much affect the shellac coating. All the screw holes like _s s_ and _d_, also the steady pins on the back, are protected by varnishing with shellac. The edges of the cocks and bridges should be polished by rubbing lengthwise with willow charcoal or a bit of chamois skin saturated with oil and a little hard rouge scattered upon it. The frosting needs thorough scratch-brushing. [Illustration: Fig. 40] At Fig. 40 we show the balance cock of our model with modified form of Howard regulator. The regulator bar _A_ and spring _B_ should be ground smooth on one side and deeply outlined to perfect form. The regulator cap _C_ is cut out to the correct size. These parts are of decarbonized cast steel, annealed until almost as soft as sheet brass. It is not so much work to finish these parts as one might imagine. Let us take the regulator bar for an example and carry it through the process of making. The strip of soft sheet steel on which the regulator bar is outlined is represented by the dotted outline _b_, Fig. 41. [Illustration: Fig. 41] To cut out sheet steel rapidly we take a piece of smooth clock mainspring about 3/4" and 10" long and double it together, softening the bending point with the lamp until the piece of mainspring assumes the form shown at Fig. 42, where _c_ represents the piece of spring and _H H_ the bench-vise jaws. The piece of soft steel is placed between the limbs of _c c'_ of the old mainspring up to the line _a_, Fig. 41, and clamped in the vise jaws. The superfluous steel is cut away with a sharp and rather thin cold chisel. [Illustration: Fig. 42] The chisel is presented as shown at _G_, Fig. 43 (which is an end view of the vise jaws _H H_ and regulator bar), and held to cut obliquely and with a sort of shearing action, as illustrated in
PREV.   NEXT  
|<   36   37   38   39   40   41   42   43   44   45   46   47   48   49   50   51   52   53   54   55   56   57   58   59   60  
61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77   78   79   80   81   82   83   84   85   >>   >|  



Top keywords:

regulator

 
shellac
 

frosting

 
mainspring
 

mastic

 

turpentine

 

Illustration

 

outlined

 

spring

 

smooth


chisel

 

remove

 
process
 

coating

 

imagine

 

presented

 
finish
 

annealed

 
shearing
 

obliquely


action
 

illustrated

 

perfect

 

correct

 

decarbonized

 

bending

 

superfluous

 

softening

 

double

 

assumes


represents

 

clamped

 

represented

 
dotted
 
making
 

outline

 

rapidly

 
scattered
 

beautiful

 

coarse


repeated

 

applying

 

etching

 

produced

 

bitings

 
protection
 

patching

 
obtain
 

waving

 

patting