FREE BOOKS

Author's List




PREV.   NEXT  
|<   402   403   404   405   406   407   408   409   410   411   412   413   414   415   416   417   418   419   420   421   422   423   424   425   426  
427   428   429   430   431   432   433   434   435   436   437   438   439   440   441   442   443   444   445   446   447   448   449   450   451   >>   >|  
fusion." By what has been said this ratio remains finite, however small the actual gradient and flow may be., and it is natural to assume, at any rate as a first approximation, that it is constant as far as the quantities in question are concerned. Thus if the coefficient of diffusion be denoted by K we have q= -K(d[rho]/dx). Further, the rate at which the quantity of substance is increasing in an element between the distances x and x+dx is equal to the difference of the rates of flow in and out of the two faces, whence as in hydrodynamics, we have d[rho]/dt =-dq/dx. It follows that the equation of diffusion in this case assumes the form d[rho] d / d[rho] \ ------ = -- ( K ------ ), dt dx \ dx / which is identical with the equations representing conduction of heat, flow of electricity and other physical phenomena. For motion in three dimensions we have in like manner d[rho] d / d[rho]\ d / d[rho]\ d / d[rho]\ ------ = -- ( K ------ ) + -- ( K ------ ) + -- ( K ------ ); dt dx \ dx / dy \ dy / dz \ dz / and the corresponding equations in electricity and heat for anisotropic substances would be available to account for any parallel phenomena, which may arise, or might be conceived, to exist in connexion with diffusion through a crystalline solid. In the case of a very dilute solution, the coefficient of diffusion of the dissolved substance can be defined in the same way as when the diffusion takes place in a solid, because the effects of diffusion will not have any perceptible influence on the solvent, and the latter may therefore be regarded as remaining practically at rest. But in most cases of diffusion between two fluids, both of the fluids are in motion, and hence there is far greater difficulty in determining the motion, and even in defining the coefficient of diffusion. It is important to notice in the first instance, that it is only the relative motion of the two substances which constitutes diffusion. Thus when a current of air is blowing, under ordinary circumstances the changes which take place are purely mechanical, and do not depend on the separate diffusions of the oxygen and nitrogen of which the air is mainly composed. It is only when two gases are flowing with unequal velocity, that is, when they have a relative motion, that these changes of relative distribution, which
PREV.   NEXT  
|<   402   403   404   405   406   407   408   409   410   411   412   413   414   415   416   417   418   419   420   421   422   423   424   425   426  
427   428   429   430   431   432   433   434   435   436   437   438   439   440   441   442   443   444   445   446   447   448   449   450   451   >>   >|  



Top keywords:

diffusion

 

motion

 

coefficient

 

relative

 
substance
 
electricity
 

phenomena

 

equations

 

substances

 

fluids


regarded

 

dilute

 

practically

 

remaining

 

influence

 

effects

 

defined

 
dissolved
 

solution

 

solvent


perceptible
 
diffusions
 

oxygen

 

nitrogen

 

separate

 

depend

 

purely

 
mechanical
 

composed

 

distribution


velocity

 
unequal
 

flowing

 
circumstances
 

difficulty

 

determining

 
greater
 
defining
 

important

 

blowing


ordinary

 

current

 

constitutes

 

notice

 

instance

 

anisotropic

 
Further
 

fusion

 
quantity
 

difference