FREE BOOKS

Author's List




PREV.   NEXT  
|<   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76  
77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   >>   >|  
int of the figure is obtained by the intersection of two straight lines, a straight line and a circle, or two circles; and as this implies that, when a unit of length is introduced, numbers employed, and the problem transformed into one of algebraic geometry, the equations to be solved can only be of the first or second degree, it follows that the equation to which we must be finally led is a rational equation of even degree. Hermite[32] did not succeed in his attempt on [pi]; but in 1882 F. Lindemann, following exactly in Hermite's steps, accomplished the desired result.[33] (See also TRIGONOMETRY.) REFERENCES.--Besides the various writings mentioned, see for the history of the subject F. Rudio, _Geschichte des Problems von der Quadratur des Zirkels_ (1892); M. Cantor, _Geschichte der Mathematik_ (1894-1901); Montucla, _Hist. des. math._ (6 vols., Paris, 1758, 2nd ed. 1799-1802); Murhard, _Bibliotheca Mathematica_, ii. 106-123 (Leipzig, 1798); Reuss, _Repertorium Comment._ vii. 42-44 (Goettingen, 1808). For a few approximate geometrical solutions, see Leybourn's _Math. Repository_, vi. 151-154; _Grunert's Archiv_, xii. 98, xlix. 3; _Nieuw Archief v. Wisk._ iv. 200-204. For experimental determinations of [pi], dependent on the theory of probability, see _Mess. of Math._ ii. 113, 119; _Casopis pro pistovani math. a fys._ x. 272-275; _Analyst_, ix. 176. (T. MU.) FOOTNOTES: [1] Eisenlohr, _Ein math. Handbuch d. alten Aegypter, uebers. u. erklaert_ (Leipzig, 1877); Rodet, _Bull. de la Soc. Math. de France_, vi. pp. 139-149. [2] H. Hankel, _Zur Gesch. d. Math. im Alterthum_, &c., chap, v (Leipzig, 1874); M. Cantor, _Vorlesungen ueber Gesch. d. Math._ i. (Leipzig, 1880); Tannery, _Mem. de la Soc._, &c., _a Bordeaux_; Allman, in _Hermathena_. [3] Tannery. _Bull. des sc. math._ [2], x. pp. 213-226. [4] In modern trigonometrical notation, 1 + sec [theta]:tan [theta]::1:tan 1/2[theta]. [5] Tannery, "Sur la mesure du cercle d'Archimede," in _Mem.... Bordeaux_[2], iv. pp. 313-339; Menge, _Des Archimedes Kreismessung_ (Coblenz, 1874). [6] De Morgan, in _Penny Cyclop_, xix. p. 186. [7] Kern, _Aryabhattiyam_ (Leiden, 1874), trans. by Rodet (Paris,1879). [8] De Morgan, art. "Quadrature of the Circle," in _English Cyclop._; Glaisher, _Mess. of Math._ ii. pp. 119-128, iii. pp. 27-46; de Haan, _Nieuw Archief v. Wisk._ i. pp. 70
PREV.   NEXT  
|<   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76  
77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   >>   >|  



Top keywords:

Leipzig

 

Tannery

 

Cantor

 
straight
 
Geschichte
 

Bordeaux

 

Archief

 
equation
 

Morgan

 

degree


Hermite

 

Cyclop

 

Eisenlohr

 
Aryabhattiyam
 

Leiden

 

FOOTNOTES

 

Handbuch

 
erklaert
 

uebers

 
Aegypter

probability

 
theory
 

experimental

 

determinations

 
dependent
 

Casopis

 

Analyst

 

pistovani

 

Kreismessung

 

Allman


Hermathena

 

Circle

 

mesure

 

Vorlesungen

 
trigonometrical
 

Quadrature

 
notation
 
modern
 
English
 

France


Archimedes

 

Archimede

 

Alterthum

 
cercle
 

Glaisher

 

Hankel

 

Coblenz

 
rational
 

finally

 
succeed