FREE BOOKS

Author's List




PREV.   NEXT  
|<   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77  
78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   >>   >|  
-86, 206-211. [9] Vieta, _Opera math._ (Leiden, 1646); Marie, _Hist. des sciences math._ iii. 27 seq. (Paris, 1884). [10] Kluegel, _Math. Woerterb._ ii. 606, 607. [11] Kaestner, _Gesch. d. Math._ i. (Goettingen, 1796-1800). [12] But see _Les Delices de Leide_ (Leiden, 1712); or de Haan, _Mess. of Math._ iii. 24-26. [13] For minute and lengthy details regarding the quadrature of the circle in the Low Countries, see de Haan, "Bouwstoffen voor de geschiedenis, &c.," in _Versl. en Mededeel. der K. Akad. van Wetensch._ ix., x., xi., xii. (Amsterdam); also his "Notice sur quelques quadrateurs, &c.," in _Bull. di bibliogr. e di storia delle sci. mat. e fis._ vii. 99-144. [14] It is thus manifest that by his first construction Snell gave an approximate solution of two great problems of antiquity. [15] _Elementa trigonometrica_ (Rome, 1630); Glaisher, _Messenger of Math._ iii. 35 seq. [16] See Kiessling's edition of the _De Circ. Magn. Inv._ (Flensburg, 1869); or Pirie's tract on _Geometrical Methods of Approx. to the Value of [pi]_ (London, 1877). [17] See Euler, "Annotationes in locum quendam Cartesii," in _Nov. Comm. Acad. Petrop._ viii. [18] Gergonne, _Annales de math._ vi. [19] See _Vera Circuli et Hyperbolae Quadratura_ (Padua, 1667); and the _Appendicula_ to the same in his _Exercitationes geometricae_ (London, 1668). [20] _Penny Cyclop._ xix. 187. [21] See Sherwin's _Math. Tables_ (London, 1705), p. 59. [22] See W. Jones, _Synopsis Palmariorum Matheseos_ (London, 1706); Maseres, _Scriptores Logarithmici_ (London, 1791-1796), iii. 159 seq.; Hutton, _Tracts_, i. 266. [23] See _Hist. de l'Acad._ (Paris, 1719); 7 appears instead of 8 in the 113th place. [24] _Comment. Acad. Petrop._ ix., xi.; _Nov. Comm. Ac. Pet._ xvi.; _Nova Acta Acad. Pet._ xi. [25] _Introd. in Analysin Infin._ (Lausanne, 1748), chap. viii. [26] _Mem. sur quelques proprietes remarquables des quantites transcendantes, circulaires, et logarithmiques._ [27] See Legendre, _Elements de geometrie_ (Paris, 1794), note iv.; Schloemilch, _Handbuch d. algeb. Analysis_ (Jena, 1851), chap. xiii. [28] _Nova Acta Petrop._ ix. 41; _Thesaurus Logarithm. Completus_, 633. [29] On the calculations made before Shanks, see Lehmann, "Beitrag zur Berechnung der Zahl [pi]," in _Grunert's Archiv_, xxi. 121
PREV.   NEXT  
|<   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75   76   77  
78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102   >>   >|  



Top keywords:

London

 

Petrop

 

Leiden

 
quelques
 
Sherwin
 

Tables

 

Cyclop

 
Shanks
 

Scriptores

 

Maseres


Logarithmici

 

Matheseos

 

Synopsis

 
Palmariorum
 

geometricae

 

Gergonne

 

calculations

 
Annales
 

Archiv

 
Lehmann

Circuli

 
Grunert
 

Exercitationes

 

Hutton

 
Appendicula
 

Hyperbolae

 

Quadratura

 

quantites

 

remarquables

 

transcendantes


circulaires

 

proprietes

 

Lausanne

 

logarithmiques

 
Analysis
 

Beitrag

 
Schloemilch
 
Legendre
 
Elements
 

geometrie


Analysin

 

appears

 

Handbuch

 
Comment
 

Cartesii

 

Introd

 

Thesaurus

 
Completus
 

Logarithm

 
Berechnung