FREE BOOKS

Author's List




PREV.   NEXT  
|<   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75  
76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   >>   >|  
-------------------------------------+ |1842 | Rutherford | 208 | 152 | _Trans. Roy. Soc._ (London, 1841), p. 283. | |1844 | Dase | 205 | 200 | _Crelle's Journ._. xxvii. 198. | |1847 | Clausen | 250 | 248 | _Astron. Nachr._ xxv. col. 207. | |1853 | Shanks | 318 | 318 | _Proc. Roy. Soc._ (London, 1853), 273. | |1853 | Rutherford | 440 | 440 | Ibid. | |1853 | Shanks | 530 | .. | Ibid. | |1853 | Shanks | 607 | .. | W. Shanks, _Rectification of the Circle_ | | | | | | (London, 1853). | |1853 | Richter | 333 | 330 | _Grunert's Archiv_, xxi. 119. | |1854 | Richter | 400 | 330 | Ibid. xxii. 473. | |1854 | Richter | 400 | 400 | Ibid. xxiii. 476. | |1854 | Richter | 500 | 500 | Ibid. xxv. 472. | |1873 | Shanks | 707 | .. | _Proc. Roy. Soc._ (London), xxi. | +-----+------------+--------+--------+--------------------------------------------+ By these computers Machin's identity, or identities analogous to it, e.g. [pi]/4 = tan^{-1} (1/2) + tan^{-1} 1/5 + tan^{-1} 1/8 (Dase, 1844), [pi]/4 = 4tan^{-1} (1/5) - tan^{-1} 1/70 + tan^{-1} 1/99 (Rutherford), and Gregory's series were employed.[29] A much less wise class than the [pi]-computers of modern times are the pseudo-circle-squarers, or circle-squarers technically so called, that is to say, persons who, having obtained by illegitimate means a Euclidean construction for the quadrature or a finitely expressible value for [pi], insist on using faulty reasoning and defective mathematics to establish their assertions. Such persons have flourished at all times in the history of mathematics; but the interest attaching to them is more psychological than mathematical.[30] It is of recent years that the most important advances in the theory of circle-quadrature have been made. In 1873 Charles Hermite proved that the base [eta] of the Napierian logarithms cannot be a root of a rational algebraical equation of any degree.[31] To prove the same proposition regarding [pi] is to prove that a Euclidean construction for circle-quadrature is impossible. For in such a construction every po
PREV.   NEXT  
|<   51   52   53   54   55   56   57   58   59   60   61   62   63   64   65   66   67   68   69   70   71   72   73   74   75  
76   77   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   >>   >|  



Top keywords:

Shanks

 

Richter

 
circle
 

London

 

construction

 

Rutherford

 

quadrature

 
computers
 

mathematics

 

squarers


persons

 

Euclidean

 

establish

 
faulty
 
defective
 

illegitimate

 

history

 
finitely
 

insist

 

assertions


reasoning
 

expressible

 
flourished
 

rational

 

algebraical

 

equation

 

Napierian

 

logarithms

 

degree

 
impossible

proposition

 

recent

 

mathematical

 
psychological
 

attaching

 
important
 
Charles
 

Hermite

 

proved

 
advances

theory

 
interest
 
Rectification
 

Circle

 

Archiv

 

Grunert

 

Astron

 
Clausen
 
Crelle
 

employed