FREE BOOKS

Author's List




PREV.   NEXT  
|<   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27  
28   29   30   31   32   33   34   35   36   37   38   39   40   41   >>  
either the synapsis stage nor the prophase forms are so clear on this point as in some of the other species studied. Figures 17 and 18 show metaphases of the two classes of second spermatocytes, the chromosomes varying somewhat in form in different preparations and even in different cysts of the same preparation. An early anaphase of this mitosis is shown in figure 19; here the small chromosome is already divided. It was impossible to find good polar views of the daughter plates in the two classes of second spermatocytes, but it is evident from figure 19 and other similar views of the second spermatocyte spindle that, as in _Tenebrio_, one-half of the spermatids will contain one of the derivatives of the small chromosome, the other half one of the products of its larger homologue. Sections of male pupae were examined for equatorial plates of somatic mitoses. Figure 1 is a specimen of such plates. As might be expected, this figure resembles quite closely the spermatogonial equatorial plate (fig. 3) in number, form, and size of chromosomes, the small one being present in both. Figure 2 is from the follicle of a young egg; here we find 28 chromosomes, but no small one. The chromosome corresponding to the larger member of the unequal pair in the male evidently has a homologue of equal size in the female. The chromosome relations in the male and female somatic cells are therefore the same as in _Tenebrio molitor_, and must have been brought about by the development of a male from an egg fertilized by a spermatozoon containing the small chromosome, and a female from an egg fertilized by a spermatozoon containing the larger heterochromosome. Trirhabda canadense. In _Trirhabda canadense_ the spermatogonial chromosomes are invariably smaller than in _T. virgata_, but similar size relations prevail. The spermatogonial plate (fig. 21) contains 30 chromosomes, 29 large and 1 extremely small. In the growth stages the association of the two unequally paired chromosomes with a rather large plasmosome is more evident than in _T. virgata_ (figs. 22-23). In this species the unequal pair is more often found at a different level from the other chromosomes in the early metaphase of the first maturation mitosis (fig. 24), but it later comes into the plate with the other chromosomes (figs. 25-27), and divides earlier than most of the other bivalents (fig. 27). In a polar view of this metaphase the largest chromosome often appears doubl
PREV.   NEXT  
|<   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26   27  
28   29   30   31   32   33   34   35   36   37   38   39   40   41   >>  



Top keywords:

chromosomes

 
chromosome
 

plates

 

figure

 

larger

 

female

 
spermatogonial
 

Tenebrio

 

similar

 
evident

unequal

 
relations
 

virgata

 

equatorial

 
somatic
 
Figure
 
Trirhabda
 

spermatozoon

 

canadense

 
homologue

fertilized

 

species

 

metaphase

 

classes

 

mitosis

 

spermatocytes

 

earlier

 
divides
 

stages

 

brought


development
 
molitor
 
largest
 

evidently

 

association

 
bivalents
 
appears
 

prevail

 

extremely

 

plasmosome


smaller

 
invariably
 

maturation

 

heterochromosome

 

unequally

 

paired

 

growth

 
specimen
 

preparation

 
anaphase