FREE BOOKS

Author's List




PREV.   NEXT  
|<   391   392   393   394   395   396   397   398   399   400   401   402   403   404   405   406   407   408   409   410   411   412   413   414   415  
416   417   418   419   420   421   422   423   424   425   426   427   428   429   430   431   432   433   434   435   436   437   438   439   440   >>   >|  
, but while the velocities given by the bright F line are positive after the principal minimum of the star's light, those given by the dark line are negative. Therefore, during the principal minimum it is a star giving the dark line which is eclipsed, and during the secondary minimum another star giving the bright line is eclipsed. This wonderful variable will, however, require more observatioens before the problem of its constitution is finally solved, and the same may be said of several variable stars, _e.g._ e Aquilae and d Cephei, in which a want of harmony has been found between the changes of velocity and the fluctuations of the light. There are some striking analogies between the complicated spectrum of b Lyrae and the spectra of temporary stars. The first "new star" which could be spectroscopically examined was that which appeared in Corona Borealis in 1866, and which was studied by Sir W. Huggins. It showed a continuous spectrum with dark absorption lines, and also the bright lines of hydrogen; practically the same spectrum as the stars of Type II.b. This was also the case with Schmidt's star of 1876, which showed the helium line (D3) and the principal nebula line in addition to the lines of hydrogen; but in the autumn of 1877, when the star had fallen to the tenth magnitude, Dr. Copeland was surprised to find that only one line was visible, the principal nebula line, in which almost the whole light of the star was concentrated, the continuous spectrum being hardly traceable. It seemed, in fact, that the star had been transformed into a planetary nebula, but later the spectrum seems to have lost this peculiar monochromatic character, the nebula line having disappeared and a faint continuous spectrum alone being visible, which is also the case with the star of 1866 since it sank down to the tenth magnitude. A continuous spectrum was all that could be seen of the new star which broke out in the nebula of Andromeda in 1885, much the same as the spectrum of the nebula itself. When the new star in Auriga was announced, in February, 1892, astronomers were better prepared to observe it spectroscopically, as it was now possible by means of photography to study the ultra-violet part of the spectrum which to the eye is invisible. The visible spectrum was very like that of Nova Cygni of 1876, but when the wave-lengths of all the bright lines seen and photographed at the Lick Observatory and at Potsdam were measured, a
PREV.   NEXT  
|<   391   392   393   394   395   396   397   398   399   400   401   402   403   404   405   406   407   408   409   410   411   412   413   414   415  
416   417   418   419   420   421   422   423   424   425   426   427   428   429   430   431   432   433   434   435   436   437   438   439   440   >>   >|  



Top keywords:

spectrum

 

nebula

 

continuous

 
principal
 

bright

 

visible

 

minimum

 

hydrogen

 

spectroscopically

 
showed

variable

 
magnitude
 
giving
 

eclipsed

 
disappeared
 

planetary

 

concentrated

 

transformed

 
traceable
 
peculiar

character

 
monochromatic
 

invisible

 

violet

 
photography
 

Observatory

 

Potsdam

 
measured
 

photographed

 

lengths


Andromeda

 

prepared

 

observe

 

astronomers

 

Auriga

 

announced

 

February

 

Aquilae

 

finally

 

solved


Cephei

 

velocity

 
harmony
 

constitution

 

positive

 

secondary

 

Therefore

 
negative
 

wonderful

 

problem