FREE BOOKS

Author's List




PREV.   NEXT  
|<   398   399   400   401   402   403   404   405   406   407   408   409   410   411   412   413   414   415   416   417   418   419   420   421   422  
423   424   425   426   427   428   429   430   431   432   433   434   435   436   437   438   439   440   441   442   443   444   445   446   447   >>   >|  
traction on the earth is about 175 times as great as the attraction of the moon. Hence it is, of course, that the earth obeys the supremely important attraction of the sun, and pursues an elliptic path around the sun, bearing the moon as an appendage. But when we come to that particular effect of attraction which is competent to produce precession, we find that the law by which the efficiency of the attracting body is computed assumes a different form. The measure of efficiency is, in this case, to be found by taking the mass of the body and dividing it by the _cube_ of the distance. The complete demonstration of this statement must be sought in the formulae of mathematics, and cannot be introduced into these pages; we may, however, adduce one consideration which will enable the reader in some degree to understand the principle, though without pretending to be a demonstration of its accuracy. It will be obvious that the nearer the disturbing body approaches to the earth the greater is the _leverage_ (if we may use the expression) which is afforded by the protuberance at the equator. The efficiency of a given force will, therefore, on this account alone, increase in the inverse proportion of the distance. The actual intensity of the force itself augments in the inverse square of the distance, and hence the capacity of the attracting body for producing precession will, for a double reason, increase when the distance decreases. Suppose, for example, that the disturbing body is brought to half its original distance from the disturbed body, the leverage is by this means doubled, while the actual intensity of the force is at the same time quadrupled according to the law of gravitation. It will follow that the effect produced in the latter case must be eight times as great as in the former case. And this is merely equivalent to the statement that the precession-producing capacity of a body varies inversely as the cube of the distance. It is this consideration which gives to the moon an importance as a precession-producing agent to which its mere attractive capacity would not have entitled it. Even though the mass of the sun be 26,000,000 times as great as the mass of the moon, yet when this number is divided by the cube of the relative value of the distances of the bodies (386), it is seen that the efficiency of the moon is more than twice as great as that of the sun. In other words, we may say that one-third of the movemen
PREV.   NEXT  
|<   398   399   400   401   402   403   404   405   406   407   408   409   410   411   412   413   414   415   416   417   418   419   420   421   422  
423   424   425   426   427   428   429   430   431   432   433   434   435   436   437   438   439   440   441   442   443   444   445   446   447   >>   >|  



Top keywords:

distance

 

efficiency

 

precession

 
capacity
 

attraction

 

producing

 

statement

 

leverage

 

increase

 
inverse

disturbing

 
actual
 
consideration
 

intensity

 
demonstration
 

attracting

 

effect

 

original

 
brought
 
distances

disturbed

 
doubled
 

divided

 

relative

 
decreases
 

square

 

reason

 
bodies
 

double

 

Suppose


importance

 

entitled

 

movemen

 

augments

 

attractive

 

inversely

 

varies

 

number

 

follow

 

gravitation


quadrupled

 

produced

 
equivalent
 

pretending

 

computed

 

assumes

 

produce

 
competent
 

measure

 

sought