FREE BOOKS

Author's List




PREV.   NEXT  
|<   408   409   410   411   412   413   414   415   416   417   418   419   420   421   422   423   424   425   426   427   428   429   430   431   432  
433   434   435   436   437   438   439   440   441   442   443   444   445   446   447   448   449   450   451   452   453   454   455   456   457   >>   >|  
by observation that the amount of aberration depends upon the distance from the apex. A star which happened to lie on the ecliptic will not be at all deranged by aberration from its mean place when it happens that the apex coincides with the star. All the stars 10 deg. from the apex will be displaced each by the same amount, and all directly in towards the apex. A star 20 deg. from the apex will undergo a larger degree of displacement, though still in the same direction, exactly towards the apex; and all stars at the same distance will be displaced by the same amount. Proceeding thus from the apex, we come to stars at a distance of 90 deg. therefrom. Here the amount of displacement will be a maximum. Each one will be about twenty seconds from its average place; but in every case the imperative law will be obeyed, that the displacement of the star from its mean place lies towards the apex of the earth's way. We have thus given two distinct descriptions of the phenomenon of aberration. In the first we find it convenient to speak of a star as describing a minute circular path; in the other we have regarded aberration as merely amounting to a derangement of the star from its mean place in accordance with specified laws. These descriptions are not inconsistent: they are, in fact, geometrically equivalent; but the latter is rather the more perfect, inasmuch as it assigns completely the direction and extent of the derangement caused by aberration in any particular star at any particular moment. The question has now been narrowed to a very definite form. What is it which makes each star seem to close in towards the point towards which the earth is travelling? The answer will be found when we make a minute enquiry into the circumstances in which we view a star in the telescope. The beam of rays from a star falls on the object-glass of a telescope; those rays are parallel, and after they pass through the object-glass they converge to a focus near the eye end of the instrument. Let us first suppose that the telescope is at rest; then if the telescope be pointed directly towards the star, the rays will converge to a point at the centre of the field of view where a pair of cross wires are placed, whose intersection defines the axis of the telescope. The case will, however, be altered if the telescope be moved after the light has passed through the objective; the rays of light in the interior of the tube will pursue a direct path,
PREV.   NEXT  
|<   408   409   410   411   412   413   414   415   416   417   418   419   420   421   422   423   424   425   426   427   428   429   430   431   432  
433   434   435   436   437   438   439   440   441   442   443   444   445   446   447   448   449   450   451   452   453   454   455   456   457   >>   >|  



Top keywords:

telescope

 

aberration

 

amount

 
displacement
 

distance

 

direction

 

minute

 

derangement

 

converge

 
descriptions

object

 
directly
 
displaced
 

circumstances

 
definite
 

question

 

narrowed

 

moment

 
enquiry
 
answer

travelling

 
centre
 

intersection

 

defines

 
altered
 

pursue

 

direct

 
interior
 

objective

 

passed


parallel

 

instrument

 

pointed

 

suppose

 

circular

 

therefrom

 

maximum

 

Proceeding

 

imperative

 

average


seconds

 

twenty

 
ecliptic
 

deranged

 

happened

 

observation

 

depends

 
coincides
 

larger

 

degree