FREE BOOKS

Author's List




PREV.   NEXT  
|<   429   430   431   432   433   434   435   436   437   438   439   440   441   442   443   444   445   446   447   448   449   450   451   452   453  
454   455   456   457   458   459   460   461   462   463   464   465   466   467   468   469   470   471   472   473   474   475   476   477   478   >>   >|  
ed by the help of our clocks and of the graduated circles on the instruments. These observations are no doubt wonderfully accurate; but they do not, they cannot, possess absolute accuracy in the mathematical sense of the word. We can, for instance, determine the place of a planet with such precision that it is certainly not one second of arc wrong; and one second is an extremely small quantity. A foot-rule placed at a distance of about forty miles subtends an angle of a second, and it is surely a delicate achievement to measure the place of a planet, and feel confident that no error greater than this can have intruded into our result. When we compare the results of observation with the calculations conducted on the assumption of the truth of Kepler's laws, and when we pronounce on the agreement of the observations with the calculations, there is always a reference, more or less explicit, to the inevitable errors of the observations. If the calculations and observations agree so closely that the differences between the two are minute enough to have arisen in the errors inseparable from the observations, then we are satisfied with the accordance; for, in fact, no closer agreement is attainable, or even conceivable. The influence which the want of rigidity exercises on the fulfilment of the laws of Kepler can be estimated by calculation; it is found, as might be expected, to be extremely small--so small, in fact, as to be contained within that slender margin of error by which observations are liable to be affected. We are thus not able to discriminate by actual measurement the effects due to the absence of rigidity; they are inextricably hid among the small errors of observation. The argument on which we are to base our researches is really founded on a very familiar phenomenon. There is no one who has ever visited the sea-side who is not familiar with that rise and fall of the sea which we call the tide. Twice every twenty-four hours the sea advances on the beach to produce high tide; twice every day the sea again retreats to produce low tide. These tides are not merely confined to the coasts; they penetrate for miles up the courses of rivers; they periodically inundate great estuaries. In a maritime country the tides are of the most profound practical importance; they also possess a significance of a far less obvious character, which it is our object now to investigate. These daily pulses of the ocean have long ceas
PREV.   NEXT  
|<   429   430   431   432   433   434   435   436   437   438   439   440   441   442   443   444   445   446   447   448   449   450   451   452   453  
454   455   456   457   458   459   460   461   462   463   464   465   466   467   468   469   470   471   472   473   474   475   476   477   478   >>   >|  



Top keywords:

observations

 

errors

 

calculations

 
rigidity
 

produce

 

familiar

 

extremely

 

observation

 

agreement

 
planet

possess

 
Kepler
 
visited
 

phenomenon

 
affected
 

liable

 

discriminate

 

margin

 
slender
 
expected

contained

 
actual
 

measurement

 

argument

 
researches
 

effects

 

absence

 
inextricably
 

founded

 

profound


practical

 

importance

 

country

 

estuaries

 

maritime

 

significance

 

pulses

 

investigate

 

obvious

 

character


object

 

inundate

 
periodically
 

advances

 

twenty

 

penetrate

 

courses

 
rivers
 

coasts

 

confined