FREE BOOKS

Author's List




PREV.   NEXT  
|<   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225  
226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   >>   >|  
_weight_ to the sun. They also show us that it would take 316 globes as heavy as our Earth to counterbalance the weight of Jupiter. No doubt this proves Jupiter to be a body of magnificent proportions; but the remarkable circumstance is not that Jupiter should be 316 times as heavy as the earth, but that he is not a great deal more. Have we not stated that Jupiter is 1,300 times as _large_ as the earth? How then comes it that he is only 316 times as _heavy_? This points at once to some fundamental contrast between the constitution of Jupiter and of the earth. How are we to account for this difference? We can conceive of two explanations. In the first place, it might be supposed that Jupiter is constituted of materials partly or wholly unknown on the earth. There is, however, an alternative supposition at once more philosophical and more consistent with the evidence. It is true that we know little or nothing of what the elementary substances on Jupiter may be, but one of the great discoveries of modern astronomy has taught us something of the elementary bodies present in other bodies of the universe, and has demonstrated that to a large extent they are identical with the elementary bodies on the earth. If Jupiter be composed of bodies resembling those on the earth, there is one way, and only one, in which we can account for the disparity between his size and his mass. Perhaps the best way of stating the argument will be found in a glance at the remote history of the earth itself, for it seems not impossible that the present condition of Jupiter was itself foreshadowed by the condition of our earth countless ages ago. In a previous chapter we had occasion to point out how the earth seemed to be cooling from an earlier and highly heated condition. The further we look back, the hotter our globe seems to have been; and if we project our glance back to an epoch sufficiently remote, we see that it must once have been so hot that life on its surface would have been impossible. Back still earlier, we find the heat to have been such that water could not rest on the earth; and hence it seems likely that at some incredibly remote epoch all the oceans now reposing in the deeps on the surface, and perhaps a considerable portion of its now solid crust, must have been in a state of vapour. Such a transformation of the globe would not alter its _mass_, for the materials weigh the same whatever be their condition as to temperature, but
PREV.   NEXT  
|<   201   202   203   204   205   206   207   208   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225  
226   227   228   229   230   231   232   233   234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   >>   >|  



Top keywords:

Jupiter

 

bodies

 

condition

 

remote

 

elementary

 

materials

 

surface

 

impossible

 
earlier
 
present

glance

 

account

 
weight
 

vapour

 

chapter

 

occasion

 

previous

 
history
 

temperature

 
countless

cooling

 
foreshadowed
 

transformation

 

heated

 

sufficiently

 

argument

 

incredibly

 

considerable

 

portion

 

highly


project
 

oceans

 
reposing
 

hotter

 

modern

 

points

 

fundamental

 

contrast

 

constitution

 

difference


supposed

 

explanations

 

conceive

 

stated

 

globes

 

counterbalance

 
circumstance
 

remarkable

 

proportions

 

proves