FREE BOOKS

Author's List




PREV.   NEXT  
|<   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233  
234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   >>   >|  
f the satellites proceeding outwards from the planet is almost the same size as our moon; the other three bodies are larger; the third being the greatest of all (about 3,560 miles in diameter). Owing to the minuteness of the satellites as seen from the earth, it is extremely difficult to perceive any markings on their surfaces, but the few observations made seem to indicate that the satellites (like our moon) always turn the same face towards their primary. Professor Barnard has, with the great Lick refractor, seen a white equatorial belt on the first satellite, while its poles were very dark. Mr. Douglass, observing with Mr. Lowell's great refractor, has also reported certain streaky markings on the third satellite. A very interesting astronomical discovery was that made by Professor E.E. Barnard in 1892. He detected with the 36-inch Lick refractor an extremely minute fifth satellite to Jupiter at a distance of 112,400 miles, and revolving in a period of 11 hrs. 57 min. 22.6 secs. It can only be seen with the most powerful telescopes. The eclipses of Jupiter's satellites had been observed for many years, and the times of their occurrence had been recorded. At length it was perceived that a certain order reigned among the eclipses of these bodies, as among all other astronomical phenomena. When once the laws according to which the eclipses recurred had been perceived, the usual consequence followed. It became possible to foretell the time at which the eclipses would occur in future. Predictions were accordingly made, and it was found that they were approximately verified. Further improvements in the calculations were then perfected, and it was sought to predict the times with still greater accuracy. But when it came to naming the actual minute at which the eclipse should occur, expectations were not always realised. Sometimes the eclipse was five or ten minutes too soon. Sometimes it was five or ten minutes too late. Discrepancies of this kind always demand attention. It is, indeed, by the right use of them that discoveries are often made, and one of the most interesting examples is that now before us. The irregularity in the occurrence of the eclipses was at length perceived to observe certain rules. It was noticed that when the earth was near to Jupiter the eclipse generally occurred before the predicted time; while when the earth happened to be at the side of its orbit away from Jupiter, the eclipse occurred af
PREV.   NEXT  
|<   209   210   211   212   213   214   215   216   217   218   219   220   221   222   223   224   225   226   227   228   229   230   231   232   233  
234   235   236   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   >>   >|  



Top keywords:

eclipses

 

Jupiter

 

eclipse

 

satellites

 

perceived

 
refractor
 

satellite

 

bodies

 
minutes
 

Sometimes


minute
 
astronomical
 

interesting

 

occurred

 
extremely
 

occurrence

 

length

 

Professor

 

markings

 
Barnard

recurred

 

Further

 
calculations
 

improvements

 

verified

 

approximately

 
foretell
 

perfected

 
consequence
 
Predictions

happened

 

future

 
actual
 

attention

 

demand

 

noticed

 

discoveries

 

irregularity

 

examples

 
observe

naming

 

accuracy

 

greater

 

predicted

 

predict

 
expectations
 

generally

 

Discrepancies

 

realised

 
sought