FREE BOOKS

Author's List




PREV.   NEXT  
|<   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261  
262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   >>   >|  
han any of the previously known satellites. In accordance with the general law, that the nearer the satellite the shorter the period of revolution, Herschel found that this little moon completed a revolution in about 1 day, 8 hours, 53 minutes. The same great telescope, used with the same unrivalled skill, soon led Herschel to a still more interesting discovery. An object so small as only to appear like a very minute point in the great forty-foot reflector was also detected by Herschel, and was by him proved to be a satellite, so close to the planet that it completed a revolution in the very brief period of 22 hours and 37 minutes. This is an extremely delicate object, only to be seen by the best telescopes in the brief intervals when it is not entirely screened from view by the ring. Again another long interval elapsed, and for almost fifty years the Saturnian system was regarded as consisting of the series of rings and of the seven satellites. The next discovery has a singular historical interest. It was made simultaneously by two observers--Professor Bond, of Cambridge, Mass., and Mr. Lassell, of Liverpool--for on the 19th September, 1848, both of these astronomers verified that a small point which they had each seen on previous nights was really a satellite. This object is, however, at a considerable distance from the planet, and requires 21 days, 7 hours, 28 minutes for each revolution; it is the seventh in order from the planet. Yet one more extremely faint outer satellite was discerned by photography on the 16th, 17th, and 18th August, 1898, by Professor W.H. Pickering. This object is much more distant from the planet than the larger and older satellites. Its motion has not yet been fully determined, but probably it requires not less than 490 days to perform a single revolution. From observations of the satellites it has been found that 3,500 globes as heavy as Saturn would weigh as much as the sun. A law has been observed by Professor Kirkwood, which connects together the movements of the four interior satellites of Saturn. This law is fulfilled in such a manner as leads to the supposition that it arises from the mutual attraction of the satellites. We have already described a similar law relative to three of the satellites of Jupiter. The problem relating to Saturn, involving as it does no fewer than four satellites, is one of no ordinary complexity. It involves the theory of Perturbations to a greater
PREV.   NEXT  
|<   237   238   239   240   241   242   243   244   245   246   247   248   249   250   251   252   253   254   255   256   257   258   259   260   261  
262   263   264   265   266   267   268   269   270   271   272   273   274   275   276   277   278   279   280   281   282   283   284   285   286   >>   >|  



Top keywords:

satellites

 

revolution

 

satellite

 

planet

 

object

 
minutes
 

Professor

 

Saturn

 
Herschel
 

extremely


requires
 
period
 

completed

 

discovery

 
motion
 

observations

 

larger

 

distant

 

perform

 
single

determined

 

accordance

 
seventh
 

nearer

 

general

 

discerned

 
August
 

photography

 
Pickering
 
relative

Jupiter

 

problem

 
similar
 

relating

 

involving

 

involves

 

theory

 

Perturbations

 

greater

 
complexity

ordinary

 

attraction

 

mutual

 

observed

 

Kirkwood

 
globes
 

distance

 

previously

 

connects

 
manner