FREE BOOKS

Author's List




PREV.   NEXT  
|<   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272  
273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   >>   >|  
ywhere else in our system, we can feel but little doubt that Uranus must rotate about an axis. The ordinary means of demonstrating this rotation can be hardly available in a body whose surface appears so small and so faint. The period of rotation is accordingly unknown. The spectroscope tells us that a remarkable atmosphere, containing apparently some gases foreign to our own, deeply envelops Uranus. There is, however, one feature about Uranus which presents many points of interest to those astronomers who are possessed of telescopes of unusual size and perfection. Uranus is accompanied by a system of satellites, some of which are so faint as to require the closest scrutiny for their detection. The discovery of these satellites was one of the subsequent achievements of Herschel. It is, however, remarkable that even his penetration and care did not preserve him from errors with regard to these very delicate objects. Some of the points which he thought to be satellites must, it would now seem, have been merely stars enormously more distant, which happened to lie in the field of view. It has been since ascertained that the known satellites of Uranus are four in number, and their movements have been made the subject of prolonged and interesting telescopic research. The four satellites bear the names of Ariel, Umbriel, Titania, and Oberon. Arranged in order of their distance from the central body, Ariel, the nearest, accomplishes its journey in 2 days and 12 hours. Oberon, the most distant, completes its journey in 13 days and 11 hours. The law of Kepler declares that the path of a satellite around its primary, no less than of the primary around the sun, must be an ellipse. It leaves, however, boundless latitude in the actual eccentricity of the curve. The ellipse may be nearly a circle, it may be absolutely a circle, or it may be something quite different from a circle. The paths pursued by the planets are, generally speaking, nearly circles; but we meet with no exact circle among planetary orbits. So far as we at present know, the closest approach made to a perfectly circular movement is that by which the satellites of Uranus revolve around their primary. We are not prepared to say that these paths are absolutely circular. All that can be said is that our telescopes fail to show any measurable departure therefrom. It is also to be noted as an interesting circumstance that the orbits of the satellites of Uranus all lie i
PREV.   NEXT  
|<   248   249   250   251   252   253   254   255   256   257   258   259   260   261   262   263   264   265   266   267   268   269   270   271   272  
273   274   275   276   277   278   279   280   281   282   283   284   285   286   287   288   289   290   291   292   293   294   295   296   297   >>   >|  



Top keywords:

satellites

 

Uranus

 

circle

 

primary

 

circular

 
closest
 

journey

 

orbits

 
telescopes
 

system


distant
 
points
 

rotation

 

ellipse

 
interesting
 

Oberon

 

absolutely

 

remarkable

 

satellite

 
leaves

distance

 

central

 
Arranged
 

Titania

 

Umbriel

 

nearest

 
accomplishes
 

Kepler

 
completes
 
boundless

declares

 

prepared

 
revolve
 

approach

 

perfectly

 

movement

 

circumstance

 

therefrom

 

measurable

 
departure

present

 

research

 

ywhere

 

actual

 

eccentricity

 
pursued
 

planets

 

planetary

 

generally

 
speaking