FREE BOOKS

Author's List




PREV.   NEXT  
|<   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102  
103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   >>   >|  
more shearing planes. (See Fig. 14.) In bending tests on wet beams, first failure occurs by compression on top of the beam, gradually extending downward toward the neutral axis. Finally the beam ruptures at the bottom. In the case of very dry beams the failure is usually by splitting or tension on the under side (see Fig. 17.), without compression on the upper, and is often sudden and without warning, and even while the load is still increasing. The effect varies somewhat with different species, chestnut, for example, becoming more brittle upon drying than do ash, hemlock, and longleaf pine. The tensile strength of wood is least affected by drying, as a rule. In drying wood no increase in strength results until the free water is evaporated and the cell walls begin to dry[49]. This critical point has been called the _fibre-saturation point_. (See Fig. 24.) Conversely, after the cell walls are saturated with water, any increase in the amount of water absorbed merely fills the cavities and intercellular spaces, and has no effect on the mechanical properties. Hence, soaking green wood does not lessen its strength unless the water is heated, whereupon a decided weakening results. [Footnote 49: The wood of _Eucalyptus globulus_ (blue gum) appears to be an exception to this rule. Tiemann says: "The wood of blue gum begins to shrink immediately from the green condition, even at 70 to 90 per cent moisture content, instead of from 30 or 25 per cent as in other species of hardwoods." Proc. Soc. Am. For., Washington, Vol. VIII, No. 3, Oct., 1913, p. 313.] [Illustration: FIG. 24.--Relation of the moisture content to the various strength values of spruce. FSP = fibre-saturation point.] The strengthening effects of drying, while very marked in the case of small pieces, may be fully offset in structural timbers by inherent weakening effects due to the splitting apart of the wood elements as a result of irregular shrinkage, and in some cases also to the slitting of the cell walls (see Fig. 25). Consequently with large timbers in commercial use it is unsafe to count upon any greater strength, even after seasoning, than that of the green or fresh condition. [Illustration: FIG. 25.--Cross section of the wood of western larch showing fissures in the thick-walled cells of the late wood. Highly magnified. _Photo by U. S. Forest Service._] In green wood the cells are all intimately joined together and are at their natural or
PREV.   NEXT  
|<   78   79   80   81   82   83   84   85   86   87   88   89   90   91   92   93   94   95   96   97   98   99   100   101   102  
103   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   >>   >|  



Top keywords:

strength

 
drying
 

condition

 

Illustration

 

effect

 

saturation

 
timbers
 
species
 

increase

 
effects

compression

 

failure

 

moisture

 

content

 

splitting

 

weakening

 

results

 

strengthening

 
marked
 

Washington


hardwoods

 

Relation

 

values

 

spruce

 
result
 

fissures

 
walled
 

Highly

 

showing

 
section

western

 

magnified

 

joined

 

natural

 

intimately

 

Forest

 
Service
 

seasoning

 

elements

 

irregular


shrinkage

 

inherent

 

offset

 

structural

 
unsafe
 
greater
 

commercial

 

slitting

 
Consequently
 

pieces