FREE BOOKS

Author's List




PREV.   NEXT  
|<   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128  
129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   >>   >|  
g test.] One size of this machine will handle specimens for transverse tests 9 inches wide and 6-foot span; the other, 12 inches wide and 8-foot span. For compression tests a free fall of about 6.5 feet may be obtained. For transverse tests the fall is a little less, depending upon the size of the specimen. The machine is calibrated by dropping the hammer upon a copper cylinder. The axial compression of the plug is noted. The energy used in static tests to produce this axial compression under stress in a like piece of metal is determined. The external energy of the blow (_i.e._, the weight of the hammer X the height of drop) is compared with the energy used in static tests at equal amounts of compression. For instance: Energy delivered, impact test 35,000 inch-pounds Energy computed from static test .26,400 " " Efficiency of blow of hammer .75.3 per cent. _Preparing the material_: The material used in making impact tests is of the same size and prepared in the same way as for static bending and compression tests. Bending in impact tests is more commonly used than compression, and small beams with 28-inch span are usually employed. _Method_: In making an impact bending test the hammer is allowed to rest upon the specimen and a zero or datum line is drawn. The hammer is then dropped from increasing heights and drum records taken until first failure. The first drop is one inch and the increase is by increments of one inch until a height of ten inches is reached, after which increments of two inches are used until complete failure occurs or 6-inch deflection is secured. The 50-pound hammer is used when with drops up to 68 inches it is reasonably certain it will produce complete failure or 6-inch deflection in the case of all specimens of a species; for all other species a 100-pound hammer is used. _Results_: The tracing on the drum (see Fig. 41) represents the actual deflection of the stick and the subsequent rebounds for each drop. The distance from the lowest point in each case to the datum line is measured and its square in tenths of a square inch entered as an abscissa on cross-section paper, with the height of drop in inches as the ordinate. The elastic limit is that point on the diagram where the square of the deflection begins to increase more rapidly than the height of drop. The difference between the datum line and the final resting point after each drop represent
PREV.   NEXT  
|<   104   105   106   107   108   109   110   111   112   113   114   115   116   117   118   119   120   121   122   123   124   125   126   127   128  
129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150   151   152   153   >>   >|  



Top keywords:

hammer

 

compression

 
inches
 

height

 

deflection

 
static
 

impact

 

energy

 

failure

 

square


complete

 

species

 
material
 

Energy

 
increase
 
bending
 
increments
 

making

 

produce

 

specimens


transverse

 

specimen

 
machine
 

handle

 

Results

 

tracing

 
reached
 

occurs

 

secured

 

represents


diagram

 

elastic

 

ordinate

 

section

 

begins

 

resting

 

represent

 
rapidly
 

difference

 

abscissa


subsequent

 

rebounds

 
actual
 
distance
 

lowest

 

tenths

 

entered

 
measured
 

records

 

pounds